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1 Problems handled
This is a c++ MPI/OpenMP library for solving d-dimensional Hamilton-Jacobi-Bellman
equations by finite difference methods, or semi-lagrangian methods [2]. First order and
second order HJ equations time-dependent or steady equations can be solved. For op-
timal control applications, some algorithms of optimal trajectory reconstruction are also
implemented in this library.

1.1 Time-dependent equations
The problem is to find u = u(t, x) solution of

∂u

∂t
(t, x) + λ(x)u(t, x) +H(t, x, u(t, x),∇u(t, x)) = 0,

(t, x) ∈ [0, T ]× Ω (1a)
u(t, x) = gborder(t, x), t ∈ [0, T ], x ∈ ∂Ω (1b)
u(0, x) = u0(x), x ∈ Ω (1c)
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where gborder, λ(x) and u0 are given functions, and Ω is a box of Rd: Ω :=
∏d

i=1[ai, bi].
Instead of (1b), it is possible to consider other type of boundary conditions:

u(t, x+ kπ) = u(t, x), x ∈ ∂Ω, k ∈ Zd, (periodic boundary condition)
(2a)

for a given vector π ∈ Rd, or

∂u

∂n
(t, x) = gmix(t, x, u(x)), x ∈ ∂Ω, (Neumann type boundary condition)

(2b)

or

∂xxu(t, x) = 0, x ∈ ∂Ω (linear boundary extrapolation). (2c)

It is also possible to consider a combination of different types of boundary conditions:
one can choose one of the above type of boundary condition, and force periodic boundary
conditions on some given directions.

The function H : [0, T ]× Ω× Rd → R can be defined either by:

• an analytic expression, if such an expression is known (for example H(t, x, p) :=
c(t, x)‖p‖+ f(t, x) · p);

• or a Hamiltonian corresponding to a one-player control problem:

H(t, x, p) := max
a∈A

(−f(t, x, a) · ∇u− `(t, x, a)) , (3a)

or

H(t, x, p) := min
a∈A

(−f(t, x, a) · ∇u− `(t, x, a)) , (3b)

where A is a set of control values, of the form A :=
∏nA

i=1[αi, βi] (with nA ≥ 1),
and where the dynamics f : [0, T ] × Rd × RnA → Rd and the distributed cost
` : [0, T ]× Rd × RnA → R are given functions (to be defined by the user);

• or a Hamiltonian function corresponding to a two-player game:

H(t, x,∇u) := max
a∈A

min
b∈B

(−f(t, x, a, b) · ∇u− `(t, x, a, b)) , (4a)

or

H(t, x,∇u) := min
a∈A

max
b∈B

(−f(t, x, a, b) · ∇u− `(t, x, a, b)) , (4b)

where f , ` are given functions and A and B are control sets of the form A :=∏nA

i=1[αAi , β
A
i ] and B :=

∏nB

j=1[αBj , β
B
j ].
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Time-dependent obstacle problem
min

(
∂u

∂t
+H(t, x,∇u), u(t, x)− g(t, x)

)
= 0, x ∈ Ω, t ∈ [0, T ],

u(0, x) = u0(x), x ∈ Ω

boundary conditions on ∂Ω× (0, T ).

(5)

Here H , Ω and u0 are as above and the function g : (0, T )× Rd → R is a given function.
For some optimal control problems such as target problems, the set {(t, x), g(t, x) ≤ 0}
may represent the set of state constraints, see [1, 3] (see also [4] as well as [5] for time-
dependent state constraint and use of double obstacle problems).

Second order time-dependent equations Some second order equations can also be
treated, of the following type

∂u

∂t
+ λ(x)u (6a)

+ max
a∈A

{
−`(t, x, a) + r(t, x, a)u− b(t, x, a) · ∇u− 1

2
Tr(σ(t, x, a)σ(t, x, a)TD2u)

}
= 0

t ∈ [0, T ], x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω

boundary conditions on ∂Ω× (0, T ).

whereA is some non empty compact subset of Rm (m ≥ 1) of the formA :=
∏nA

i=1[αi, βi],
b(t, x, a) is a vector of Rd, r(t, x, a) and `(t, x, a) are real-valued, and σ(t, x, a) is a d× p
real matrix (for some p ≥ 1). This problem is linked to the computation of the value
function of stochastic optimal control problems. See section 6 for more details (a general
semi-Lagrangian scheme is proposed in the software).

1.2 Steady equations
The problem is to find u = u(x) solution of an time-dependent Hamilton-Jacobi equation:

λ(x)u(x) +H(x, u(x),∇u(x)) = 0, x ∈ Ω, (7a)
u(x) = gborder(x), x ∈ ∂Ω. (7b)

with H given directly or in the form of (3).
Obstacle problem can be also solved, of the form:

min

(
λu(x) +H(x,∇u), u(x)− g(x)

)
= 0, x ∈ Ω (8a)

u(x) = gborder(x), x ∈ ∂Ω (8b)
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(in that case, assuming that gborder(x) ≥ g(x)).
Some second order stationary equations of the form

λ(x)u(x) +H(x, u(x),∇u(x), D2u(x)) = 0, x ∈ Ω, (9a)
u(x) = gborder(x), x ∈ ∂Ω. (9b)

can also be solved. It is advised that the function λ(x) be strictly positive (for convergence
of the solver).

The domain Ω is an hyperrectangle of Rd of the form
∏d

i=1[ai, bi].
It is possible also to solve (7a) in a subdomain C. In that case the set C should be

defined such that

C := {x, gdomain(x) < 0} (10)

(equivalently, Ω\C = {x ∈ Ω, gdomain(x) ≥ 0}). The boundary conditions at the border
of ∂C should be of Dirichlet type, fixed by the initial condition u0(x):

u(x) = u0(x), x ∈ ∂C, (11)

This equation can be solved by using an iterative procedure - or "value iteration algo-
rithm", where the part λ(x)u(x) is treated implicitly. Note that for steady equations (as
well as time dependent equations), the basic finite difference (FD) scheme is based on the
following iteration: for n ≥ 0, for a fixed ∆t > 0,

un+1(x)− un(x)

∆t
+ λ(x)un+1(x) + h(x, un(x), Dun(x)) = 0, x ∈ Ω, (12)

where h(x, un(x), Dun(x)) corresponds to a numerical approximation ofH(x, un(x),∇un(x))
and the term λ(x)u(x) is treated in an implicit way.

In the case the problem is defined only in a subdomain C as in (10), the iterations
(12) are performed only at grid points x ∈ C. (See section 3.1 for computations in a
subdomain.)

For such steady equations, once un+1 has been computed, iterations are then stopped
as soon as ‖un+1 − un‖L∞ is smaller than a given threshold. Therefore we obtain the
following recursion:

un+1(x) =
1

1 + ∆t λ(x)
(un(x)−∆t h(x, un(x), Dun(x))) = 0, x ∈ C,

then if ‖un+1 − un‖L∞ ≥ ε go to the next step, otherwise stop. (See section 3.2.)
For the SL method, the iterative scheme is based on an implicit treatment of the

λ(x)u(x) term, and becomes, in the case of (7a):

un+1(x) = min
a

1

1 + ∆tλ(x)
([un](x+ ∆tf(t, x, a)) + `(t, x, a)) = 0, x ∈ C.

Here [un] denotes the Q1 interpolation of un on the spatial grid mesh.
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1.3 Optimal trajectory reconstruction
In the case when the value function associated to an optimal control problem (governed
by an ODE) has been solved by using for the corresponding HJB equation and by using
the software, it is possible to construct also the optimal trajectory corresponding to the
optimal control problem. In order to compute the optimal trajectory of the concerned
problem, some reconstruction algorithms are included in the library (either based on the
dynamic programming principle, or by using a minimal function assciated to the prob-
lem). In addition, the user has the possibility to implement other reconstruction methods
and to test them with the software. See section 3.5 for details.

2 Compilation and execution (gcc/cmake)

2.1 System requirements
The library is available for Linux, Mac and Windows operating systems. In all cases, in
order to use the library, one needs some building tools for c/c++ to be installed:

• the CMake Build chain (cmake) available for all systems at http://www.cmake.org/.

• a GCC compiler1 (c++, ...)

The folders are organized as follows.

Folders src, include, lib:

• Folder lib contains the pre-compiled library libhj.a. This library includes the
implemented numerical methods (classes HJB, HJB_SL and HJB_FD), all data man-
agement methods (grids, options, ...).

• The header files containing the class declarations are in the folder include/.

• The master c++ file is main.cpp and is in the folder src/. The folder src/ main
contain also the file HJB_user.cpp with some included trajectory reconstruction
procedures (to allow the user to add some personal implementation of trajectory
reconstruction methods: see the src/*.h files).

These folders should not be renamed.

1native for Linux and Mac OS, minGW distribution for Windows : http://www.mingw.org/
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Folders data, OUTPUT, VALUE: The user has to create a new model file as a C-header
file, named like data_mymodel.h, that contains the definition of the drift, distributed-
cost, the hamiltonian function (if known analytically), the initial conditions, the boundary
conditions, the obstacle function (if any) and all the parameters that describe the model to
be solved.

When the data file data_mymodel.h is created, the user should include its name in
the file data/data_simulation.h as follows:

#include ”data_mymodel.h”

(The data file data_simulation.h is then included in main.cpp by an include com-
mand in the same way, so that the main file is not touched.)

Some basic knowledge of C programming syntax is necessary to describe a new prob-
lem to be solved by the HJB solver.

For the user’s convenience several models of data files are already available in the
folder data. In particular:

• data_basicmodel.h: shows the main functions that have to be defined. It gives
some basic options for the computation and for plotting results;

• data_advancedmodel.h: similar model implemented by an other approximation
method for the Hamiltonian function.

(In this case, these two files themselves include an other data file : data_default.h
with more specific parameter definitions.)

The file data_simulation.h should not be removed or renamed (this data file is
included in src/main.cpp).

The solver’s executable needs two folders: OUTPUT/ and VALUE/ where the outputs
of the simulation will be stored. (If these folders are removed or renamed, the program
will not be able to save outputs propertly and will signal an error.)

2.2 ROC-HJ-Editor
The ROC-HJ-Editor may be available in the folder ROC-HJ-Editor. This application is
designed to assist with the process of editing the template for a new data file. The appli-
cation shows main possible options and helps the user to define a new data file adapted
to the problem to be solved. When creating a new template model using the ROC-HJ-
Editor, two files are generated: data_user_mymodel.h which contains the parameters
and functions that the user has to define; data_default_mymodel.h which contains
predefined parameters that the user does not need to handle (but that are mandatory for
running the program). Further detailed instructions on how to construct a header file and
how to compile the program are presented in the User’s Manual for ROC-HJ solver.
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2.3 Compilation and execution
Once the data file is defined and declared in the file data_simulation.h (see above),
the project can be compiled and executed. The compilation/execution process is com-
posed of several steps:

• Building the Makefile: cmake . (do not forget the "dot")

• Compilation: make (source files *.cpp are in the directory src/)

• Options: make clean (cleaning some executable files, some *.o files), make
cleanall.

• Eventually, before compilation, use ./clean to first erase all unecessary files (can
be done before the cmake . command.)

• ./cleandatwill erase all output data files such as OUTPUT/*.dat, OUTPUT/*.txt
files, but not the executables. Eventually, before compilation, use ./clean to first
erase all unecessary files

Sequential execution mode Execution (basic):

./exe

Execution (with options)

./exe -nn NN -nc NC

Options :

• option -nn NN: number of mesh points per dimension

• option -nc NC: number of controlsuitable for the equation to be solved.s per com-
mand’s dimension.

OpenMP execution mode Some options run with OpenMP. Execution:

./exe -nt nbth

where nbth is the number of threads (typically try nbth=2 or nbth=4).

Parallel code (Parallel MPI version only): contact the ROC-HJ developpers for more
info.

Execution:
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mpirun -n MPI_PROCS ./exe -nn NN -nc NC -nt OMP_THREADS -nd MPI_GRID_DIM

where

• MPI_PROCS: number of MPI processors (default is 1)

• NN: number of mesh points per dimension

• NC: number of controls per command’s dimension

• OMP_THREADS: number of OpenMP threads (default 1)

• MPI_GRID_DIM: dimension of the MPI mesh grid decomposition (2 or 3) (default
2).

Example 1 : mpirun -n 2 ./exe -nn 200 will execute the program with 2 MPI pro-
cessors and 200 mesh points per dimension.

Example 2 : mpirun -n 64 ./exe -nn 500 -nc 10 -nt 4 -nd 2 will execute
the program with MPI_PROCS=64 MPI processors, NN=500 points per direction, NC=10
controls per command’s dimension, OMP_THREADS=4OpenMP threads, and MPI_GRID_DIM=2,
the dimension of the MPI mesh grid decomposition.

Example 3 : mpirun -n 1 ./exe -nn 500 -nc 10 -nt 4.

The OpenMP parallelization is working for Semi Lagrangian and Finite Difference meth-
ods. When using only this method, one can indicate only one process for the mpirun
command (for instance mpirun -n 1 ./exe -nt 4 for using 4 openMP threads) or,
equivalently, use ./exe -nt 4

2.4 Download page
Different version of the package exist corresponding to different OS:

• Linux 64 bits : rochj-2.5.4-28avr2020-linux64.zip

• Mac OS X : rochj-2.5.4-28avr2020-mac64.zip

• Windows : contact us directly.

The distributed software ROC-HJ contains:

• a pre-compiled library lib/libhj.a (with the set of its header files )

• The main source file src/main.cpp

• A set of "model-description" files
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data/data_simulation.h
data/data_xxx.h
. . .

• ROC-HJ-Editor (depending of the ROC-HJ version) a code generator with an
integrated editor that can help the user to create new data files.

• Some visualization tools for Matlab/Octave users (OUTPUT/output_view.m and
related files).

3 Model definition header files
The file data/data_simulation.h is the main user’s input file and contains the pa-
rameters that define the equation to be solved. It can include an other data_xxx.h file
(see basic examples data_basicmodel.h, data_FD_2d_ex1_basic.h).

3.1 Data describing the problem to be solved
The parameter NAME defines the name of the problem that will by used only for shell
output during the execution.

State variables and controls .

• DIM: dimension d of the problem

• XMIN[DIM], XMAX[DIM]: the boundary of the computation domain in each direc-
tion

• PERIODIC[DIM]: this parameter sets the periodicity for each component of the
state variable x:

1 : the variable xi is periodic

0 : the variable xi periodic

For a one-player control problem :

• cDIM dimension nc of the control variable a

• UMIN[cDIM], UMAX[cDIM]: min and max values of the controls in each direction;
this defines the set of controls as a cube

∏
i=1,nA

[αi, βi].

• NCD[cDIM] number of commands per direction; this defines a grid on the set of
controls;
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For a two-player control problem :

• cDIM and cDIM2 dimensions nA and nB, of the control variables a and b respec-
tively.

• UMIN[cDIM], UMAX[cDIM]: min and max values of the controls a in each direc-
tion; this defines the set of controls a in a cube

∏
i=1,nA

[αi, βi].

• UMIN2[cDIM2], UMAX2[cDIM2]: min and max values of the controls b in each
direction; this defines the set of controls b in a cube

∏
i=1,nB

[α2
i , β

2
i ].

• NCD[cDIM] and NCD2[cDIM2] number of controls per direction. This defines a
grid for each set of controls.

Dynamics and cost functions For a one-player control problem :

• function dynamics: f(t, x, a) : the dynamics of the controlled system

• function distributed_cost: `(x, a) : the running cost of the optimal control
problem

• function discount_factor : λ(x). For steady equations, this function should be
strictly positive.

For a two-player control problem :

• function dynamics2: f(t, x, a, b) : the dynamics of the controlled system

• function distributed_cost2: `(x, a, b) : the running cost of the optimal control
problem

• function discount_factor : λ(x). For steady equations, this function should be
strictly positive.

Special parameters for second order equations

• function funcR : implements the term r(t, x, a) in (6);

• function funcY : implements the term σ(t, x, a) in (6);
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Additional computations

• TOPT_TYPE: when an optimal time function associated with the computed solution
u is defined this parameter defines what kind of time optimal problem must be
solved :

TOPT_TYPE=0: the minimum time function is associated with the computed
solution u as:

Tmin(x) = min{t ∈ [0, T ], u(t, x) ≤ 0} (13)

Note that if there is no time t such that u(t, x) ≤ 0, Tmin(x) is attributed
the value INF (a large positive value, defined in stdafx.h, in general set to
INF=1e5.

TOPT_TYPE=1: the exit time function (hereafter also refered as maximum
time function) will be associated with the computed solution u as:

Tmax(x) = max{t ∈ [0, T ], u(t, x) ≤ 0} (14)

Note that if t exists in [0, T ] such that u(t, x) ≤ 0, then Tmax(x) is attributed a
small negative value (i.e., the value -1.e-5).

• COMPUTE_TOPT: should be set to 1 in order that the minimal (resp. maximal) time
function be saved in topt.dat, and can be used for optimal trajectory reconstruc-
tion when TRAJ_METHOD=0.

• function Vex: if known, the exact solution may be implemented (in that case, set
also COMPUTE_VEX=1).

Hamiltonian function and associated parameters

• COMMANDS ∈ {0,1,2}: This parameter indicates how the Hamiltonian function
H(x, p) should be defined, using an explicit definition or a definition using a mini-
mization (or a maximization) over a discrete set of controls.

Case ”COMMANDS=0”: The hamiltonian function H(t, x, p) should be known ex-
plicitly. In that case, the user has to define the function Hnum with the expression of
a numerical hamiltonian that is consistent with H(x, p). Some examples are given
in the file data/data_advancedmodel.h or data_FD_2d_ex1_advanced.h.
In addition, the user must complete the function compute_Hconst to define d
constants which are bounds for

sup
x, p, t

∣∣∣∣∂H∂pi (x, p, t)
∣∣∣∣
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for each i = 1, . . . , d (for all x ∈ Ω, all possible gradient values p and times
t ∈ [0, T ].) This is then used to set the time step ∆t in order to satisfy a CFL
condition. These constants may also be used in the function Hnum when the Lax-
Friedrich numerical hamiltonian is used. (The user may also define directly the
constants ci =Hconst[i] and initialize the previous function accordingly.)

Case ”COMMANDS=1”: This corresponds to the case when the HJB equation de-
scribes the value of an optimal control problem with one player When this value
is chosen, the Hamitonian is calculated by optimization over the grid of controls
α, as in (3). (Hence the Hamiltonian of the problem may not be explicitly known.)
The function Hnum may remain in the header file but will not be used in the compu-
tations. Here, the program will use a numerical hamiltonian function correspond-
ing to a finite difference approximation of H(t, x,∇u) = max

α
(−f(t, x, α).∇u −

`(t, x, α)), as follows:

Hnum(t, x, p−, p+) := max
α

(
d∑
i=1

max(−fi(t, x, α), 0)p−i + min(−fi(t, x, α), 0)p+
i − `(t, x, α)

)
,

(here in the case OPTIM=MAXIMUM). Examples can be found in data/data_basicmodel.h
(rotation type), or in data/data_FD_2d_ex1_basic.h (eikonal equation).

Case ”COMMANDS=2”: This corresponds to the case when the HJB equation is re-
lated to a two player game, and the Hamiltonian is defined as a min/max or a
max/min over a set of controls, as in (4a) or (4b). The function Hnum may remain
in the header file, but will not be used in the computations. Here, in the case of a
max-min Hamiltonian function (i.e., OPTIM=MAXMIN), the following definition of
H is used:

H(t, x,∇u) := max
α

min
β

(−f(t, x, α, β).∇u− `(t, x, α, β)).

The program uses a numerical hamiltonian function corresponding to a finite differ-
ence approximation similar to the one-player case, over a set of discretized controls.
An example is given in data/data_FD_2d_2c.h

• OPTIM ∈ {MINIMUM, MAXIMUM, MINMAX, MAXMIN}: when COMMANDS=1 or
COMMANDS=2, this parameter defines the choice of the optimization type to use in
the definition of the Hamiltonian function.

Boundary conditions The parameters are:

• function v0: corresponds to the initial data u0. This function is also used to initialize
the iterations in the case of steady equations.
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• BOUNDARY ∈ {0,1,2,3}:

BOUNDARY=0: means no boundary treatment. The value of v0 will be used in the
initialisation to set the boundary (ghost cell) values, and thesel values will remain
unchanged afterwards.

BOUNDARY=1: utilizes Dirichlet boundary conditions for each direction d which
is not periodic (i.e., such that PERIODIC[d]=0). The boundary value should be
defined in the function g_border.

BOUNDARY=2: utilizes a mixed boundary condition of the form

∂v

∂n
= gmix(t, x, v(x)).

(where the normal n is pointing outward). Because of the box domain, this corre-
sponds to

± ∂v
∂xi

= gmix(t, x, v(x)).

The function g_bordermix is then used (for each direction d which is not periodic,
i.e., such that PERIODIC[d]=0).

BOUNDARY=3: utilizes a special vxixi = 0 boundary condition for each direction d
which is not periodic (note that this kind of approximation is in general numerically
unstable).

Furthermore, if PERIODIC[d]=1, then periodic boundary conditions will be used
in the variable xd.

• g_border, g_bordermix : used to set different types of boundary conditions.

• BORDERSIZE[dim]: list of integers to define the number of ghost cells used in
each direction (at left or right boundary of the domain). For instance, for dim=2,
BORDERSIZE[dim]={2,2} defines a boundary with two ghost cells in each direc-
tion. In this case, if the mesh size is Nx*Ny, then the grid including ghosts cells is
of size (Nx+4)*(Ny+4).

Initial conditions

• EXTERNAL_v0 ∈ {0,1} : If set to 0 (default value), it initializes the first iterate u0

for n = 0 with the function v0. Otherwise, if set to 1, then u0 is iniatialized by using
the values stored in the file OUTPUT/VF.dat (or OUTPUT/VF_PROCxx.dat if par-
allel MPI is used). This can be used in combination with a prefix EXTERNAL_FILE_PREFIX
in order to modify the loaded file (i.e., the prefix of the filename VF.dat).

EXTERNAL_TOPT ∈ {0,1} : (This parameter is only effective if EXTERNAL_v0=1.)
If set to 0 (default value), it initializes the minimal time function as usual. If
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set to 1, then it will load the previously computed minimal time values from file
OUTPUT/topt.dat. This can be used in combination with a prefix EXTERNAL_FILE_PREFIX
in order to modify the filename of the loaded file (i.e., the prefix of the filename
topt.dat).

EXTERNAL_FILE_PREFIX (type char) : A prefix that can be used in order to
modify the loaded file (i.e., the prefix of the filenames VF.dat and topt.dat).
Default value is EXTERNAL_FILE_PREFIX[]=””.

Computation in a subdomain

• COMPUTE_IN_SUBDOMAIN ∈ {0,1}: determines if subdomain computations should
be done, so that the evaluation of un+1(x) is done only at grid mesh points x such
that g_domain(x)<0. (For front propagation problems and in the presence of ob-
stacle terms, this can be used in order to reduce significantly the CPU time.)

• function g_domain(x): function used to define the subdomain.

Obstacle terms Instead of solving ut +H(t, x, u,∇u) = 0, the solver can also treat HJ
obstacle equations such as

min

(
∂u

∂t
+H(t, x, u,∇u), u− g(t, x)

)
= 0. (15)

where g(t, x) is defined by the user. In particular it forces to have u(t, x) ≥ g(t, x) in the
case of (15).

Also, the following obstacle equations can be considered:

max

(
∂u

∂t
+H(t, x, u,∇u), u− g̃(t, x)

)
= 0 (16)

or

max

(
min

(
∂u

∂t
+H(t, x, u,∇u), u− g(t, x)

)
, u− g̃(t, x)

)
= 0, (17)

where g̃(t, x) is user-defined. We will have u(t, x) ≤ g̃(t, x), in the case of (16), or
u(t, x) ∈ [g(t, x), g̃(t, x)] in the case of (17).

For this, the following parameters are used:

• OBSTACLE ∈ {0,1}

0 : no obstacle g taken into account.

1 : Equation (15) is treated, with the obstacle g .

• function g_obstacle
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• OBSTACLE_TILDE ∈ {0,1}

0 : no upper obstacle g̃ is taken into account.

1 : Equation (16) is treated, with the upper obstacle function g̃.

• function g_obstacle_tilde

• In the case we set OBSTACLE=1 and OBSTACLE_TILDE=1 then (17) is treated, and
both obstacle functions g and g̃ust be defined. The obstacle functions should satisfy
g(x) ≤ g̃(x) in order to avoid undesired results.

• PRECOMPUTE_OBSTACLE ∈ {0,1}: gives the possibility to precompute all ob-
stacle terms before doing the main iterations. This can reduce CPU time when the
obstacle functions are not time-dependent.

3.2 Numerical schemes and associated parameters
Discretization parameters

• ND[DIM] : tab containing the size mesh in each direction (cartesian mesh)

• MESH ∈ {0,1}: default is 1. It utilizes ND[i]+1 points in direction i. (If MESH=0,
the mesh points are at the center of the mesh cells, and there are ND[i] points in
direction i)

• DT: the time step used for the solver, for the evolutive equation.
- For the finite difference approach, if DT=0, then time step DT is computed so that
the CFL condition be satisfied, that is, such that

DT * (Hconst[0]/dx[0] + Hconst[1]/dx[1] + ... ) <= CFL

where the CFL number belongs to [0, 1]. Otherwise, if DT>0, then the value DT is
used for the time step.
- For the semi-lagrangian approach and for the stationnary equation, the parameter
h in the iterative procedure is also set to DT.

Stopping criteria

• T: terminal time

• MAX_ITERATION : to stop the program when this maximum number of iterations is
reached.
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• EPSILON : for the stopping criteria. If set to 0, do nothing. If set to some positive
value ε, then the program will stop at iteration n+ 1 as soon as

‖un+1 − un‖L∞ := max
i
|un+1
i − uni | ≤ ε.

(the L∞ error between two successive steps is smaller than ε).

Therefore, in the case of a time dependent problem, iterations are performed until
tn = T , where the program stops. The parameter EPSILON should be set to 0, and T
is used to fix the terminal time. (MAX_ITERATION should be set to a sufficiently large
value).

In the case of a steady problem, EPSILON should be set to a strictly positive (small)
value, and MAX_ITERATION should be also used to limit the number of maximum it-
erations in the case of convergence problems. (For debugging purposes, the parameter
MAX_ITERATION can also be set to 1 or a small integer value.)

Choice of the solver

• METHOD ∈ {MDF,MSL}:

MDF: Finite Difference Method. The finite difference method can be used with all
possible values of the parameter COMMANDS described before.

MSL: semi-Lagrangian Method. This method does not use the numerical Hamilto-
nian function Hnum, rather mainly the dynamics and the distributed costs functions.
Important: It is assumed that the Hamiltonian is of the form (3a), (3b). The pa-
rameter COMMANDS has no effect on the method. (The case of max-min or min-max,
i.e. (4a) or (4b) is not yet supported by the software.)

3.2.1 Finite Difference Method

This method is used when METHOD=MDF. The user has to set the following scheme dis-
cretization parameters:

• CFL ∈]0, 1[: the constant of the CFL condition that is used in finite difference meth-
ods to adjust the time step DT.

• TYPE_SCHEME ∈ {LF,ENO2}: type of spacial discretization

LF: Lax-Friedrich scheme (first order scheme)

ENO2 : ENO scheme of second order to approximate the derivatives∇u

• TYPE_RK ∈ {RK1,RK2,RK3}: time discretization by a Runge-Kutta method of
order 1, 2 or 3.
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RK1 : RK method of order 1

RK2 : RK method of order 2

RK3 : RK method of order 3

3.2.2 Semi-Lagrangian Method

This method is used when METHOD=MSL. One needs to define :

• TYPE_SCHEME ∈ {STA,EVO}:

STA : stationnary case, for solving (7a). In this case, the scheme is based on
an iterative procedure.

EVO : dynamic case (should be default value) for solving (1). It is also advised
to use this mode to solve steady equations, and a stopping criteria based on
the parameter EPSILON.

• ORDER ∈ {1,2}: this value is set to 1 for solving first order equations and to
2 to solve second order equations (see other section below for second order HJB
equations).

• TYPE_STA_LOOP ∈ {NORMAL,SPECIAL}: Mesh loop order during mainloop for
the stationary case

NORMAL : normal ordering loop

SPECIAL: special ordering loop (makes 2d loops at each iteation, modifiying
the current values of the value v during each loop)

• TYPE_RK ∈ {RK1_EULER,RK2_HEUN,RK2_PM}:

RK1_EULER : RK1 Euler scheme

RK2_HEUN : RK2 Heun scheme

RK2_PM : RK2 Mid-point scheme

• INTERPOLATION ∈ {BILINEAR,PRECOMPBL,DIRPERDIR}:

BILINEAR : (default value) bilinear interpolation (Q1 interpolation)

PRECOMPBL : precompute the interpolation coefficients (to use with tiny mesh
sizes)

DIRPERDIR : another interpolation method (obsolete)

• P_INTERMEDIATE : number of intermediate time steps to go from tn to tn + ∆t for
computing a characteristic for a given RK method.
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3.3 Value problems defined implicitly
Some special computations can be made in addition to solving the HJB equation in the
case when the computed d-dimensional solution function u is used to characterize the
epigraph of an other value function v of a d − 1 dimensional problem. This approach is
used for general state-constrained value problems as described in [1], where the problem
is set back to a state-constrained reachability problem. It is assumed that both value
functions are related to each other as follows:

v(t, x1, . . . , xd−1) = inf{z, u(t, x1, . . . , xd−1, z) ≤ 0}. (18)

So the value function v can be considered as being implicitly defined by the computed
function u.

• VALUE_PB ∈ {0,1}: to allow these additional computations, set VALUE_PB=1.

Also when VALUE_PB=1 it is assumed that only the last state variable, xd, can be used
to define an implicit value function. This convention must be taken into account when
defining the dynamical system and its parameters in the header file.

3.4 Execution and output parameters
The main purpose of the library is to solve the HJB - type equations. In addition, it is
possible to compute and save some associated functions during the main computation. It
is also possible to work with optimal trajectory algorithms, after the computation of the
solution. The main computation to solve the PDE is most time and memory consuming
part of the work. Once the solution computed and saved one can run the program many
times to compute different trajectories from this data without need to make the main loop
computation at each time. To choose the execution modes the user can use the following
parameters (see below).

All the output files generated during an execution are generaly saved in the folder
OUTPUT/ (the user may use other names for the output files and output directory, see file
include/stdafx.h (or src/stdafx.h) although it is recommanded to not modify the
filenames).

• COMPUTE_MAIN_LOOP:

1 : the main computational loop (iterative scheme) is called

0 : the main loop is not called, only data initializations, trajectory computa-
tions and savings are performed. This is useful if a previous HJB computation
has been made and that only new trajectories have to be computed. There is
no need to recompute the value function or the minimal time function. The
program will then load the needed values (value function and/or minimal time
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function) in order to perform trajectory reconstructions, or to perform partic-
ular savings.

• COMPUTE_VEX ∈ {0,1}: will save the exact solution on the grid in a file.

1 : the solution programmed in the user function Vex will be saved.

0 : no saving.

In particular it allows to ocompute errors (see below) relatively to the value of Vex.

• COMPUTE_TOPT ∈ {0,1}: will compute an optimal time function associated with
the solution u. Recall that the type of optimal time function is defined by the pa-
rameter TOPT_TYPE (see (13) and (14)). The computed function will be saved at
the end of the computation.

• PRECOMPUTE_COORD:

1 : precomputes the coordinates: faster computations but more memory de-
manding.

0 : no precomputations.

• CHECK_ERROR ∈ {0,1}: is set to 1 then computes the error every CHECK_ERROR_STEP
steps (L∞ and L1 error computations) Errors are relative to the Vex function. Fur-
thermore, the parameter C_THRESHOLD defines the region where the errors will be
computed : the region of points x such that |Vex(t,x)| < C_THRESHOLD

3.5 Parameters for trajectory reconstruction
The dynamics used for the trajectory reconstruction algorithms is the one defined in
the function dynamics (in the case COMMANDS=0 or 1) or dynamics2 (in the case
COMMANDS=2). Related reconstruction procedures are located, if available, in the files

src/compute_ot.h (reconstruction based on an optimal time function)
src/compute_otval.h (reconstruction based on the value function)
src/find_oc.h

For two-player games, the reconstruction procedure is programmed in

src/compute_ot2.h (reconstruction based on an optimal time function)
src/find_oc2.h.

The following parameters are used:

• TRAJPT ∈ {0,1,...}: set to 1 or greater for trajectory reconstruction, 0 oth-
erwise. When TRAJPT=N, with N ≥ 1 this defines the number of trajectories to
compute for N initial conditions.
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• initialpoint[TRAJPT*DIM]: the set of coordinates of all initial points (put the
list of all the TRAJPT*DIM coordinates, one point after another, if there is more
than one initial point).

• TRAJ_METHOD ∈ {0,1} : this is two methods of trajectory reconstruction.

0: based on the minimal time (if TOPT_TYPE=0), or exit time (if TOPT_TYPE=1)

1: based on the value function (utilizes the VFxx.dat files).

Furthermore, if COMMANDS=1, then the function dynamics is used for the dynamics
(one control). If COMMANDS=2, the function dynamics2 is used (two controls).

• time_TRAJ_START: starting time t0 used in the case TRAJ_METHOD=1. The value
t0 may belong to [0, T [ or be such that t0 < 0.

In the case t0 ∈ [0, T [: The program will construct an approximated trajectory such
that ẏ(t) = f(t, y(t), α(t)), t ∈ [t0, T ], and starting with y(t0) = x0 as initial point.
More precisely, if v(tn, x) is the value function at time tn, the procedure aims at
constructing a control a = an (and associated trajectory yatn,x(tn+1)) that realizes a
minimum in

inf
a
v(tn+1, y

a
tn,x(tn+1)) + h`(tn, y

a
tn,x(tn+1), a) (19)

is minimal (resp. maximal) in the case OPTIM=MAXIMUM (resp. the case OPTIM=MINIMUM).

In the case t0 < 0: the program will look for a first value tn (n = 0, . . . , N − 1)
such that v(tn, x) > 0 and v(tn+1, x) < 0, and will then reconstruct a trajectory
with starting time t = tn (if v(t0, x) < 0 then the trajectory will start from t = t0).

• If TRAPJT=0 then one should define accordingly initialpoint[0]={}.

Now we describe some stopping criteria which are used in the trajectory reconstruc-
tion routines.

• g_target: a user-defined function, such that g_target(x)<=0 if x belongs to a
"target" set.

• TARGET_STOP ∈ {0,1}: default is 0. If we set TARGET_STOP=1, then the pro-
gram will furthermore stop the trajectory reconstruction when

g_target(x)<=0

and will declare this as a successfull trajectory reconstruction (success=1 in the
output file successTrajectory.dat). This option can be useful when the tra-
jectory reconstruction is based on the value function (TRAJ_METHOD=1) and that
we want to furthermore stop the trajectory reconstruction when a given region is
reached.
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• min_TRAJ_STOP (double): The trajectory reconstruction is stopped when

val(x)<=min_TRAJ_STOP

and declare this as a successfull trajectory reconstruction (success=1 in the output
file successTrajectory.dat). Notice that in the case when TRAJ_METHOD is
0, linked to optimal time reconstruction procedures, the value val(x) corresponds
to the value of topt(x) at point x; in the case when TRAJ_METHOD=1, val(x)
corresponds to the value function at the given time of reconstruction and at point x.

In general the minimal time is zero on a target set, and it can be numerically difficult
to reach exactly topt(x)=0. So this parameter can be set to a small non zero value
to allow some margin error to stop the trajectory reconstruction.

• max_TRAJ_STOP (double): The trajectory reconstruction is also stopped when

val(x)>=max_TRAJ_STOP

and will declare this as an unsuccesfull trajectory reconstruction (success=0 in
the output file successTrajectory.dat). This can be used to detect when
val(x)=INF or some large value, showing that we enter a forbidden region and
that the trajectory reconstruction should be stopped.

In the case COMMANDS=2 (in the presence of an adverse control denoted u2), it is
possible to reconstruct trajectories by setting TRAJ_METHOD=0 (using the minimal time
function approach) and using the following; the function dynamics2 is used to describe
the dynamics for the two-control case.

• ADVERSE_CONTROL∈{0,1}: default value is 0. It will then find the best strategy
of controls u for the worst case situation on the adverse control u2. If ADVERSE_CONTROL=1,
then it will use the adverse control u2 as defined by the function u2_adverse.

• u2_adverse(t,x,u2): user-defined function, to define in u2 an adverse control
depending on time t and position x.

The following can be used for more outputs concerning trajectory reconstructions:

• PRINT_TRAJ ∈ {0,1} : default is 0. If set to 1, more outputs on trajectory re-
construction are given in the current window.

3.6 Output parameters and files
Output files are generally contained in the directory OUTPUT/. (It is possible to use other
names for the output files and output directory, see file include/stdafx.h, although it
is recommanded not to do so.)
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3.6.1 Savings options

• FILE_PREFIX (type char) : This character string will be prefixed to all filenames
that will be saved during the execution. The default value is an empty char: char
FILE_PREFIX[]=””. In this case the default file names will be used. Notice that

each new execution of the program will erase all previously generated data having
the same file name. Hence one way to keep precomputed datas is to use the prefix
FILE_PREFIX parameter in order to add it to the output filenames. (In the same
way, EXTERNAL_FILE_PREFIX can be used to change the name of some loaded
data files for starting computations in particular cases. See EXTERNAL_v0)

• SAVE_VF_ALL ∈ {0,1}: to save the value of u each SAVE_VF_ALL_STEP iter-
ations. The default names of generated files are OUTPUT/VFn.dat where n is the
number of file.

SAVE_VF_ALL_STEP (≥ 1).

• SAVE_VF_FINAL ∈ {0,1}: to save the value of u at the last iteration. The default
name of the generated file is OUTPUT/VF.dat. (Set to 1 in particular if recompu-
tations with different COUPE parameters - see below - is used, while the value is not
recomputed - COMPUTE_MAIN_LOOP=0)

• SAVE_VF_FINAL_ONSET ∈ {0,1}. Set to 1 to save the interpolated values of
the final value function u on a given, user-defined set of points. The data must
be defined in OUTPUT/X_user.dat (default name): each line of this file must
contain the d coordinates of a point for which one want to compute and save the
value function. The generated file is OUTPUT/XV_user.dat (default name).

• SAVE_VALUE_ALL ∈ {0,1}. Assumes VALUE_PB=1. Set to 1 to save the implicit
value v at each SAVE_VALUE_ALL_STEP iteration. The default names of generated
files are OUTPUT/VALUE_n.dat where n is the number of file.

• SAVE_VALUE_FINAL ∈ {0,1}. Assumes VALUE_PB=1. Set to 1 to save the
value of the implicit value function v at the last iteration. The default name of
the generated file is OUTPUT/VALUE.dat.

• The file OUTPUT/VEX.dat is saved if COMPUTE_VEX=1. It contains the final exact
solution value as programmed in Vex.

• COUPE_DIMS[DIM], COUPE_VALS[DIM]:
- list of integers ni (0 or 1) to define the two variables used for the cut.
- list of values (ci or 0.) to define the position of the cut. The values ci are used only
when ni = 0.
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These parameters allows to save some lower-dimensional slice of the output files:
- A file OUTPUT/coupe.dat is saved (corresponding to a slice of VF.dat).
- A file OUTPUT/coupeex.dat is also saved in the case COMPUTE_Vex=1.
- A file OUTPUT/toptcoupe.dat is also saved in the case COMPUTE_TOPT=1.
Example : COUPE_DIMS[DIM]={1,0,1} and COUPE_VALS[DIM]={0.,0.5,0.}
(in the case DIM=3) defines a slice in the plane x2 = 0.5.

3.6.2 Data formatting options

• FORMAT_FULLDATA ∈ {0,1}: defines the format of the data files for value func-
tions savings (such as VF.dat, ...). This parameter does not affect files such as
coupe.dat

– FORMAT_FULLDATA=1: The file is structured as follows, on each line

i1 i2 .... id val

where val corresponds to the value u(T, x) at mesh point x = (xi1 , . . . , xid).

– FORMAT_FULLDATA=0: each line, in the same order, contains the value

val

3.6.3 General data files

• OUTPUT/filePrefix.dat. This file contains the value of FILE_PREFIX[] pa-
rameter. It is used also by the visualization routines to retrieve all the other files
generated for a given model.

Important remark. The name of this file does not change if a non empty FILE_PREFIX[]
is defined. This is the unique file that has always the same name. All the other files
are given here with their default names, but are named with the user’s prefix as
follows:

OUTPUT/{FILE_PREFIX}{defaultname}.dat

• OUTPUT/data.dat (default name): This file is saved when the main loop compu-
tation is finished. It contains the most important parameters values for the solved
problem : the dimension of the state variable and controls, the computational do-
main, the number of grid points in each direction. Theses data are essential to
retrieve the real values of space variables from their integer indexes saved in the
formatted value files. This file is used in particular by the plotting functions for
matlab/octave given with the library (see the section below).

• OUTPUT/Dt.dat (default name): This file contains the value of the time step used
for the solution iterations. This value is used by the trajectory reconstruction algo-
rithms.
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3.6.4 Files related to trajectory reconstruction

• OUTPUT/traj-n.dat: If TRAJPT≥ 1, the file corresponds to the trajectory num-
ber n. Each line has the form

x1 x2 ... xd a1 ... ap t

where xi are the coordinates of the point at time t, and aj the corresponding
control parameters. Adverse controls bj may also be present, as follows:

x1 x2 ... xd a1 ... ap b1 ... bq t

• OUTPUT/successTrajectories.dat: Each line n of this file has the form

x1 x2 ... xd t success

and indicates whether the trajectory number n was successful or not (success=1
or 0) and shows the corresponding terminal coordinates (xi) and time t of the last
constructed point.

3.7 Advanced parameters
• function init_data(): it is empty by default. It is called when the execution

starts, before the initialization of all HJB objects. The user can complete this func-
tion if necessary to initialize some model specific parameters. This can be useful
for some complex applications.

• function post_data(): this function is empty by default. It is called at the end
of the execution, after all standard HJB computations. The user can complete this
function if necessary to define some model specific data transformations. This can
be useful for some complex applications.

4 Graphic outputs
Matlab/Octave: the file OUTPUT/output_view.m can be executed by typing output_view
in a Matlab or Octave user’s interface (we advise to first set the current Matlab’s directory
to OUTPUT/). Some parameters are given below:

For the first figure:

• level_set : a level set value.

• PLOT_CONTOUR ∈ {0,1}: if set to 1, will plot contours of the output with level_set
value.
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• PLOT_REACHABLE ∈ {0,1}: if set to 1, will plot the 2d set of points where output
value is ≤ level_set).

This plot is based on the output value which is in the file VF.dat for DIM=2, and a priori
in the file coupe.dat for DIM>2.

For the second figure:

• PLOT_3d ∈ {0,1}: set this parameter to 1 in order to obtain a 3d plot of the result
(or of coupe.dat if available).

• PLOT_TMIN ∈ {0,1}: (default is 0). Set this parameter to 1 in order to obtain a
3d graph of the minimal time (to reach a target). Will then use output topt.dat,
and will draw several contour plots ranging from 0 to T (plotting topt.dat is only
working for DIM=2).

For a third figure:

• PLOT_3d_EX ∈ {0,1}: set this parameter to 1 in order to obtain a 3d graph of
the exact value (or of coupeex.dat if available).

Also for the figures above,
• AXIS_EQUAL ∈ {0,1}: if set to 1, will make "axis equal".
• TRAJECTORY ∈ {0,1}: if set to 1, will plot for each trajectory the first two com-

ponents (x1, x2) (on the first figure).
• SUPPLEMENT_TRAJECTORY ∈ {0,1}: if set to 1, will furthermore draw the tra-

jectories (and controls) in separated graphs.

Paraview: (obsolete) This option is only working for some 2d/3d cases.
Launch "paraview", then load the files in VTK/*.

5 Examples

5.1 Rotation example
We give two ways to program an advection-like example, in files data_basicmodel.h
and data_advancedmodel.h. We consider the equation

∂tu+ max(0,−f(x) · ∇u) = 0.

with the parameters Ω = [−2, 2]2, T = 0.5, f(x1, x2) = 2π(−x2, x1). (Hence the
Hamiltonian H(x, p, t) = max(0,−f(x) · p).)
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In the first way (data_basicmodel.h), we define dynamics

f(x, a) = af(x)

with two control values a ∈ {0, 1}.
In the second way (data_advancedmodel.h), we define the Lax-Friedrich numeri-

cal hamiltonian function Hnum associated to H (see (22)).

5.2 Eikonal equation
see the files data_FD_2d_ex1_basic.h and data_FD_2d_ex1_advanced.h The prob-
lem solved is

∂tu+ c(x, t)‖∇u‖ = 0, x ∈ [−2, 2]d, t ∈ [0, T ]. (20)
u(0, x) = u0(x), x ∈ [−2, 2]d, (21)

with d = 2, T = 1, here c(x, t) ≡ 1, and with some (radially symetric) initial data u0(x).
In the file data_FD_2d_ex1_basic.h, a scheme is programmed using a control-

discretisation of ‖∇u‖ as follows:

‖∇u‖ ∼ max
k=1,...,NCD

〈(cos(θk), sin(θk),∇u〉, θk =
2kπ

NCD

where NCD is the number of controls.
In the file data_FD_2d_ex1_advanced.h, a scheme is programmed using a Lax-

Friedriech numerical approximation Hnum associated to H :

Hnum(x, (p−1 , p
+
1 ), . . . , (p−d , p

+
d ), t) := H(x,

p− + p+

2
, t)−

d∑
i=1

ci

(
p+
i − p−i

2

)
(22)

The exact solution is given for comparison.

6 Second order HJB equations and SL scheme

The problem solved is the following second order Hamilton-Jacobi (HJ) equation

∂u

∂t
+ λ(x)u+ (23a)

max
a∈A

(
−1

2
Tr(σ(t, x, a)σT (t, x, a)D2u)− b(t, x, a) · ∇u+ r(t, x, a)u− `(t, x, a)

)
= 0

t ∈ (0, T ), x ∈ Rd,
u(0, x) = u0(x), x ∈ Rd (23b)
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where A is some non empty compact subset of Rm (m ≥ 1), b(t, x, a) is a vector of
Rd, r(t, x, a), `(t, x, a), are real-valued, and σ(t, x, a) is a d × p real matrix (for some
p ≥ 1). This problem is linked to the computation of the value function of stochastic
optimal control problems.

It is also possible to consider a corresponding steady equation of the form (9a), that

is, equation (23a) alone with no term
∂u

∂t
.

It is also possible to consider obstacle equations as for (15), (16) or (17).
The c++ proposed solver is based on an SL method (FD not programmed for this

case). 2

Scheme definition: we consider the following SL scheme, implemented on the points x of the
grid G. The initialization is done by

v0(x) = u0(x), x ∈ G.

For n = 0, . . . NT − 1 (time iterations) (or untill some stopping criteria is satisfied in the case of
steady equations), for all grid points x ∈ G, we consider

vn+1(x) := min
a∈A

e−r(t,x,a)∆t

1 + λ(x)∆t

 1

2p

∑
1≤k≤p

∑
ε=±1

[vn](yk,ε,ux (∆t)) + ∆t `(t, x, a)

 . (24)

where the "characteristics" yx(h) can be defined, at iteration t = tn, for some h ≥ 0, for instance
by:

yk,ε,ax (h) := x+Bk(t, x, a)h+ εΣk(t, x, a)
√
h, ε ∈ {−1, 1}, k = 1, . . . , p. (25)

Also, [vn](y) denotes some interpolation of vn at point y (typicallyQ1). When using the definition
(25), the scheme is of expected order O(∆t) +O( ε

∆t) where ε is of the order of the interpolation
error ‖vn− [vn]‖∞. For smooth data, this interpolation error is or order ∆x2 for Q1 interpolation,
where ∆x is the spatial mesh size.

An example of data file is given in data/data_SL_order2_2d_diffusion.h.

User inputs:

• ORDER=2

• PARAMP (denoted p below) This is in general set to p = d in the scheme.

• function Sigma: σ(x, k, a, t). A vector of format double[DIM], also denoted σk

below. This vector should be programmed so as to correspond to the kth column
vector of the matrix

√
p σ ≡ (

√
p σik(t, x, a))i=1,...,d. More generally, for consis-

tency of the scheme with the PDE, the following relation should hold:

1

p

∑
k=1,...,p

σk(t, x, a)σk(t, x, a)T = σ(t, x, a)σ(t, x, a)T .

2For advanced users: it is programmed in function secondorder_itSL_evo that might be avail-
able in the source file HJB_SL.cpp, or in /include/secondorder_itSL_evo.h.
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• function Drift: b(x, k, a, t), also denoted bk(t, x, a) below. This is used to define
a set of p vectors bk(t, x, a) (k = 1, . . . , p) of Rd. For consistency of the scheme
with the PDE, the following relation should hold:∑

k=1,...,p

bk(t, x, a) = b(t, x, a).

For instance the user can set b1(t, x, a) = B(t, x, a) and bk = 0, ∀k ≥ 2. One can
also set, with p = d: bk = the k-th component of the b vector, the other components
beeing set to zero.

• function funcR : r(t, x, a)

• function distributed_cost(x,t,x) : distributive cost `(t, x, a).

• function discount_factor(x) : λ(x).

7 Source architecture
All the computation algorithms and data management functions are implemented in the
following classes :

• Mesh: This class defines the data structure for the grid data. It implements all
needed functions to access (for reading and writing) the grid data.

• Commands: This class defines the data structure for the set of controls.

• HJB: This class defines the general HJB problem. The class has a first main attribute
which is a pointer to a Mesh object that contains all the information about the com-
putation domain and its discretization, and a second attribute which is a pointer to a
Commands object that contains the information about the set of controls. All param-
eters related to the definition of the problem (dynamics, cost functions, Hamiltonian
function) are attributes of this class. It contains some general methods : different in-
terpolation functions, trajectory reconstruction methods and savings management.
This class is the base class for two derived classes : HJB_FD and HJB_SL.

• HJB_FD. This class inherits from HJB and defines the main loop computations for
finite difference methods.

• HJB_SL. This class inherits from HJB and defines the main loop computations for
semi-Lagrangian methods.
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All the classes described above are already compiled in the library libhj.a. Their
headers are in the folder include/.

We remind that the user needs to code the problem parameters into a c++ header file
and to include its name in the file data/data_simulation.h. For example, if the user
data file is called data_myexample.h, then the following line (and only this one) must
be included in the file data/data_simulation.h:

#include ”data_myexample.h”

8 Demonstration examples (downloadable)
In order to illustrate some numerical methods implemented in the HJB Solver some ele-
mentary control problems are given below. For each example a Graphical User’s Interface
is proposed. It allows to define the parameters of the model, the numerical method cho-
sen to solve it. For time optimal control problems it is possible to compute the optimal
trajectories for different initial conditions.

The graphical interfaces are developed with MATLAB (2015) and require a MATLAB
licence to run.

8.1 Dubin’s car example
We consider the navigation problem for a ground vehicle that has the objective to reach
a target before some given time T . The state of the system is characterized by the state
vector (x, y, θ) where (x, y) are the 2D-coordinates of the center of mass of the vehicle in
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a given reference frame, and θ is the angle between the velocity vector and the x-axis (the
direction of the vehicle) The state space is therefore

R× R× [0, 2π].

The motion of the vehicle obeys the following dynamics:
x′ = u cos(θ)
y′ = u sin(θ)
θ′ = ω

(26)

where u, the modulus of the velocity, is assumed constant, and w, the control input, is the
angular speed and satisfies ω ∈ [ωmin, ωmax] with adjustable parameters ωmin, ωmax. It is
possible to fix the time horizon, T , the vehicle’s velocity u, the position and the shape of
the target set (disc or rectangle). On can also choose up to 4 obstacles that the vehicle has
to avoid during its trajectory to reach the target. These obstacles are considered as state
constraints on the variables (x, y).

(a) Example of reachable set (b) Some optimal trajectories

Figure 1: Examples of outputs for Dubin’s car model

The first step of the simulation computes and plots the reachable set corresponding
to the fixed parameters, as in Figure 1-(a). After the computation of the reachable set it
is possible to reconstruct optimal minimum time trajectories by choosing different initial
conditions (see Figure 1-(b)).

A demonstrative GUI is available for different OS.

8.2 Zermelo’s navigation example
In this example, we consider a ship moving with contant relative velocity in a river of a
given width. We assume also that the current’s velocity is known, and the state of the
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system is the position (x, y) of the ship. The motion is given by a nonlinear system in R2

controlled by the steering direction θ ∈ [0, 2π]. The evolution of the swimmer is governed
by the control system

F :

{
x′ = c− ay2 + u cos(θ)
y′ = u sin(θ)

(27)

The ship aims to join an island (disc of radius R, where the parameter R can be chosen
by the user).

Figure 2: Graphical interface for Zermelo’s navigation model

Figure 2 shows the interface for this model. It is possible to fix the time horizon, T ,
the ship’s velocity, u, and the position of the target set (disc). The user can also choose
up to 2 obstacles in the environnement. In this example, the first step of the simulation
computes and plots the backward reachable set within time T , as on the figure 3 (left).
After the computation of the reachable set it is possible to reconstruct optimal minimum
time trajectories by choosing different initial conditions (see Figure 3 (right)).

A demo is available corresponding to different OS.

8.3 Advection example
This interface allows to compare four numerical methods for solving a linear HJ-equation
(Advection-rotation example):

∂v

∂t
+H(x,∇x) = 0, with v(x, 0) = v0(x),
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Figure 3: Backward reachable set for Zermelo’s navigation problem (left). Optimal
trajectories (right)

with the Hamiltonian defined by:

H(x,∇xv) = (−f(x1, x2)) · ∇xv

and f : R2 → R2 is a rotational dynamics:

f(x1, x2) =

(
−2πx2

2πx1

)
.

In this example, different numerical methods can be compared:

• finite difference scheme, with Lax-Freidrich approximation of the Hamiltonian

• finite difference scheme, with ENO2 approximation of the Hamiltonian

• Semi-lagrangian scheme with RK2 scheme for the integration of the characteristics

• Semi-Lagrangian scheme with exact integration of the characteristics

Figure 4 shows the interface for this problem. It is possible to fix the time horizon, T ,
the radius of the target set (disc). During the simulation, some local error estimates (in
L∞, L1, and L2) are printed on the Matlab workspace.

A demo is available corresponding to different OS.

9 Documentation
A PDF version of the documentation is available (see doc/User_Guide.pdf).
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Figure 4: Graphical interface for the Advection model
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