Approximation of an optimal control problem posed on a network with a perturbed problem in the whole space

Mohamed CAMAR-EDDINE

INSA de Rennes & IRMAR

Joint work with M. Chuberre, M. Haddou and O. Ley

Journées ANR COSS October 3-4, 2024, Rennes

• A lot of recent developments on optimal control problems and HJB equations on networks or stratified structures :

Achdou-Camilli-Cutrì-Tchou (2013), Imbert-Monneau-Zidani (2013), Camilli-Schieborn (2013), Imbert-Monneau (2017), Barles-Briani-Chasseigne (2014), Achdou-Oudet-Tchou (2015), Lions-Souganidis (2016), Graber-Hermosilla-Zidani (2017), Carlini-Festa-Forcadel (2020), Fayad-Forcadel-Ibrahim (2022, Siconolfi (2022),

and, for a recent overview, Barles-Chasseigne (2024), · · ·

- A subject beyond the classical theory
- A new theory has been designed for issues on networks by, first considering trajectories and costs adapted to networks

A different approach

Perturbing a classical optimal control problem in \mathbb{R}^2 , with a singular term pushing the trajectories towards the network

• Goals :

(1) Link between the limit problem and some known optimal control problems

(2) Encode the geometry of the network in the perturbation

• A related work by Achdou-Tchou (2015) exists where the control problem on a junction is approximated by a state constraint problem in an ε -neighborhood of the junction

A classical optimal control problem in \mathbb{R}^2

Assumptions :

A : compact subset in \mathbb{R}^2 (the controls)

 $f: \mathbb{R}^2 \times A \to \mathbb{R}^2, \ \ell: \mathbb{R}^2 \times A \to \mathbb{R}$: continuous s.t., for all $a \in A, \ x, y \in \mathbb{R}^2$,

 $|f(x,a)|, |\ell(x,a)| \le M, \quad |f(x,a) - f(y,a)|, |\ell(x,a) - \ell(y,a)| \le M|x-y|$

Consider the infinite horizon control problem

$$V(x) := \inf_{\alpha \in L^{\infty}((0,\infty);A)} \int_{0}^{\infty} e^{-\lambda t} \ell(X^{x,\alpha}(t),\alpha(t)) dt,$$

where

$$X^{x,lpha}(0)=x\in \mathbb{R}^2, \quad \dot{X}^{x,lpha}(t)=f(X^{x,lpha}(t),lpha(t)), \ t>0.$$

• Classical way : restrict the class of controls to those leading to $X^{x,\alpha}(\cdot)$ on Γ

 $\mathcal{A}_{x} := \{ \alpha \in L^{\infty}((0,\infty); A) : X^{x,\alpha}(t) \in \Gamma \text{ for all } t \geq 0 \}$

• Under some additional assumptions on the set of controls,

$$V_{\Gamma}(x) := \inf_{\alpha \in \mathcal{A}_x} \int_0^\infty e^{-\lambda t} \ell(X^{x,\alpha}(t), \alpha(t)) dt$$

unique viscosity solution to a HJB equation on Γ (Achdou-Camilli-Cutrì-Tchou (2013) and Achdou-Oudet-Tchou (2015))

• A notion of solution, in many usual cases, equivalent to those developed in Imbert-Monneau-Zidani (2013).

Consider the very simple junction

Г

- With such Γ and d computations are "simple"
- Our framework should be generalized to junctions with a finite number of branches

$${\sf \Gamma}=\{O\}\cupigcup_{1\leq i\leq \ell}(0,\infty)e_i$$

A $\frac{1}{\varepsilon}$ -perturbed optimal control problem Consider

$$V^{\varepsilon}(x) := \inf_{\alpha \in L^{\infty}((0,\infty);A)} \int_{0}^{\infty} e^{-\lambda t} \ell(X^{x,\alpha,\varepsilon}(t),\alpha(t)) dt,$$

where $X^{x,\alpha,\varepsilon}$ is the solution to

$$(S_{\varepsilon}) \begin{cases} \dot{X}^{x,\alpha,\varepsilon}(t) = F^{\varepsilon}(X^{x,\alpha,\varepsilon}(t),\alpha(t)) := f(X^{x,\alpha,\varepsilon}(t),\alpha(t)) - \frac{1}{\varepsilon} \nabla d(X^{x,\alpha,\varepsilon}(t)), t > 0\\ \\ X^{x,\alpha,\varepsilon}(0) = x, \end{cases}$$

and set

$$k^{x,lpha,arepsilon}(t)=rac{1}{arepsilon}\int_0^t
abla d(X^{x,lpha,arepsilon}(s))ds, \quad t\geq 0.$$

Gradient trajectories

Consider

$$\left\{ egin{array}{ll} \dot{X}(t) &= -
abla d(X(t)), \quad t > 0, \ X(0) &= x \in \mathbb{R}^2. \end{array}
ight.$$

Theorem (Łojasiewicz (1984))

For any $x \in \mathbb{R}^2$, the limit of X, as $t \to \infty$, exists and belongs to Γ

Gradient trajectories

Theorem

Take $d_{\Gamma} \in C^{1,1}_{loc}(\mathbb{R}^2; [0,\infty))$ *s.t.* $\Gamma = \{d_{\Gamma} = 0\} = \{\nabla d_{\Gamma} = (0,0)\}$

and there exists $\nu > 0$, $\theta \in (0, 1)$ such that

 $|\nabla d_{\Gamma}(x)| \ge \nu d_{\Gamma}(x)^{\theta}$ for all $x \in \mathbb{R}^2$ (Lojasiewicz inequality)

Then, $\forall x \in \mathbb{R}^2$, the unique solution $Z^x : [0, \infty) \to \mathbb{R}^2$ of

 $\dot{X} = -\nabla d_{\Gamma}(X), \ X(0) = x$

has a limit $\overline{x} \in \Gamma$, as $t \to \infty$. Moreover, the map

$$\phi_{d_{\Gamma}}: x \in \mathbb{R}^2 \mapsto \overline{x} := \lim_{t \to \infty} Z^x(t) \in \Gamma$$

is continuous.

Gradient trajectories

Proposition

For $d_{\Gamma}(x) = x_1^2 x_2^2$, $Z^{\times}(t)$ lies on a hyperbola \perp to the level sets of d_{Γ} :

$$(Z_2^{ imes}(t))^2 - (Z_1^{ imes}(t))^2 = x_2^2 - x_1^2$$
 for all $t \geq 0,$

and

$$\phi_{d_{\Gamma}}(x) = \begin{cases} \operatorname{sgn}(x_2)\sqrt{x_2^2 - x_1^2}e_N & \text{if } |x_2| \ge |x_1|, \\ \\ \operatorname{sgn}(x_1)\sqrt{x_1^2 - x_2^2}e_E & \text{if } |x_1| \ge |x_2|, \end{cases}$$

is $\frac{1}{2}$ -Hölder continuous on \mathbb{R}^2

Theorem (Convergence of trajectories)

Take $x \in \mathbb{R}^2$ and $\alpha \in L^{\infty}((0,\infty); A)$. Then,

(S_{ε}) admits a unique solution $X^{x,\alpha,\varepsilon} \in W^{1,\infty}_{loc}([0,\infty))$

② Up to extraction, $(X^{x,\alpha,\varepsilon}, k^{x,\alpha,\varepsilon})$ converges locally uniformly on $(0,\infty)$ to some $(X^{x,\alpha}, k^{x,\alpha}) \in H^1_{loc}(0,\infty) \times H^1_{loc}(0,\infty)$ when $\varepsilon \to 0$, s.t.

•
$$\forall t \geq 0, \quad X^{x,\alpha}(t) = x + \int_0^t f(X^{x,\alpha}(s), \alpha(s)) ds - k^{x,\alpha}(t),$$

•
$$\forall t > 0, \quad X^{x,\alpha}(t) \in \Gamma,$$

•
$$X^{x,\alpha}(0^+) = \overline{x}, \ k^{x,\alpha}(0^+) = x - \overline{x},$$

If x ∈ Γ, then, up to extraction, (X^{x,α,ε}, k^{x,α,ε}) converges locally uniformly on [0,∞) to (X^{x,α}, k^{x,α}) ∈ H¹_{loc}[0,∞) × H¹_{loc}[0,∞) as ε → 0.

$$\ \, { (X^{x,\alpha},k^{x,\alpha})\in W^{1,\infty}_{\rm loc}(0,\infty)\times W^{1,\infty}_{\rm loc}(0,\infty)} \ \, \text{and}$$

 $|\dot{X}^{x,lpha}(t)|,|\dot{k}^{x,lpha}(t)|\leq |f|_{\infty}$ a.e. $t\in(0,\infty).$

 $\omega(x,\alpha) = \{X^{x,\alpha} \in H^1_{\text{loc}}(0,\infty) : (X^{x,\alpha}, k^{x,\alpha}) \text{ is a subsequential limit}$ of $(X^{x,\alpha,\varepsilon}, k^{x,\alpha,\varepsilon})\}.$

- $\omega(x, \alpha) \neq \emptyset$
- Does $\omega(x, \alpha)$ reduces to one element?

• We cannot characterize completely the solution $(X^{x,\alpha}, k^{x,\alpha})$ of the limit problem.

- $(X^{x,\alpha}, k^{x,\alpha})$ is a solution to a Skorokhod problem
- Such a problem on Γ faces nonuniqueness and instability

A partial characterization result inside the edges

Take $X^{x,\alpha} \in \omega(x,\alpha)$. By continuity of the trajectory for t > 0,

$$(0,\infty) = \mathcal{Z}(X^{x,\alpha}) \cup \bigcup_{0 \le n \le \ell} (a_n, b_n),$$

• $\mathcal{Z}(X^{x,\alpha}):=\{t\in(0,\infty):X^{x,\alpha}(t)=O\}$: times when the trajectory is at O

- (a_n, b_n) : time intervals when the trajectory is inside a branch.
- $\ell = \ell(X^{x,\alpha})$ is possibly ∞

Theorem (Dynamic inside the branches : $\Gamma \setminus \{O\}$)

Take $X^{x,\alpha} \in \omega(x,\alpha)$.

1 If
$$a_n = 0$$
, then, for all $t \in [0, b_n]$,

$$\begin{cases} X^{x,\alpha}(t) = \overline{x} + \int_0^t \langle f(X^{x,\alpha}(s), \alpha(s)), e_{i(n)} \rangle e_{i(n)} ds, \\ k^{x,\alpha}(t) = x - \overline{x} + \int_0^t \langle f(X^{x,\alpha}(s), \alpha(s)), e_{i(n)}^\perp \rangle e_{i(n)}^\perp ds \end{cases}$$

2 If $a_n \neq 0$, then, for all $t \in [a_n, b_n]$,

$$\begin{cases} X^{\times,\alpha}(t) = \int_{a_n}^t \langle f(X^{\times,\alpha}(s), \alpha(s)), e_{i(n)} \rangle e_{i(n)} ds, \\ k^{\times,\alpha}(t) = k^{\times,\alpha}(a_n) + \int_{a_n}^t \langle f(X^{\times,\alpha}(s), \alpha(s)), e_{i(n)}^{\perp} \rangle e_{i(n)}^{\perp} ds \end{cases}$$

▷ Characterization of $(X^{x,\alpha}, k^{x,\alpha})$ inside the edges (in terms of projections of the dynamic f)

 \triangleright ($X^{x,\alpha}, k^{x,\alpha}$) uniquely determined once $(a_n)_n$ and $(b_n)_n$ known : hard to obtain for general f.

• A "Zeno effect" example, where $X^{O,\alpha}$ visits all the edges for arbitrary small t

Behavior of $X^{O,\alpha}$ with locally constant control near O

Once at O, it's difficult to say what happens later

- How long does the trajectory remain at O?
- In which branch does it enter? · · ·

Lemma (A trajectory visiting all branches instantaneously)

There exists a control $\alpha \in A_0$ such that $\omega(0, \alpha) = \{X^{0,\alpha}\}$ and, for all $\delta > 0$ and $i \in \{E, N, W, S\}$, there exists $t \in (0, \delta)$ such that $X^{0,\alpha}(t) \in (0, \infty)e_i$.

• With such lpha one cannot determine the branch the trajectory enters

Convergence to the control problem on the network

Consider the perturbed optimal control problem

$$V^{\varepsilon}(x) := \inf_{\alpha \in L^{\infty}((0,\infty);A)} \int_{0}^{\infty} e^{-\lambda t} \ell(X^{x,\alpha,\varepsilon}(t),\alpha(t)) dt, \ x \in \mathbb{R}^{2}$$

and the natural asymptotic optimal control problem on $\ensuremath{\mathsf{\Gamma}}$

$$\overline{V}(x):= \inf_{\substack{lpha \in L^\infty((0,\infty);\mathcal{A})\ X^{x,lpha} \in \omega(x,lpha)}} \int_0^\infty e^{-\lambda t} \ell(X^{x,lpha}(t), lpha(t)) dt, \ \ x \in \mathbb{R}^2.$$

Convergence to the control problem on the network

Two additional assumptions

• There exists $\eta > 0$ such that, for every $x \in \mathbb{R}^2$,

 $\overline{B}(0,\eta) \subset f(x,A)$

• For every $x \in \mathbb{R}^2$, $a \in A$,

 $\ell(x,a) = \ell(x)$

Theorem

• V^{ε} converges locally uniformly on \mathbb{R}^2 to \overline{V}

Proof : by tracking the trajectories

Some remarks

• Complete answer to our problem. But, we need the assumptions

 $\overline{B}(0,\eta) \subset f(x,A)$ for some $\eta > 0$

and

$$\ell(x,a) = \ell(x), \quad \forall (x,a) \in \mathbb{R}^2 \times A$$

• In the literature on HJB equations on networks, costs may **depend directly on the control** but are designed for controls that **keep the trajectory on**

• Here, we allow any control

Some estimates independent of α and $\varepsilon > 0$

Lemma (Well-posedness of (S_{ε}) for $\varepsilon > 0$)

There exists a unique solution $X^{x,\alpha,\varepsilon} \in W^{1,\infty}_{loc}([0,\infty))$ of (S_{ε}) and

 $|X^{x,\alpha,\varepsilon}(t)| \leq |x| + |f|_{\infty}t, \quad \forall t \geq 0.$

Lemma

There exists $C = C(T, |f|_{\infty}, |x|) > 0$ s.t., for any $0 \le t_1 \le t_2 \le T$,

$$\frac{1}{\varepsilon}\int_{t_1}^{t_2} d(X^{\mathsf{x},\alpha,\varepsilon}(t))dt \leq C(t_2-t_1) + \frac{1}{4}\left(d^{\frac{1}{2}}(X^{\mathsf{x},\alpha,\varepsilon}(t_1)) - d^{\frac{1}{2}}(X^{\mathsf{x},\alpha,\varepsilon}(t_2)\right).$$

Invariant subsets for (S_{ε})

•
$$S \subset \mathbb{R}^2$$
 is invariant for (S_{ε}) if, for any $t \ge 0, X^{\times, \alpha, \varepsilon}(t) \in S$.

• A sufficient condition, for a subset S with C^1 boundary, to be invariant is

 $\langle F^{\varepsilon}(x,a), n_{\partial S}(x) \rangle \leq 0$, for all $x \in \partial S$, $a \in A$,

where $n_{\partial S}(x)$ = the outward unit normal vector to ∂S at x.

• For $\lambda > 0$, define the subset

$$Z(\lambda) := \{x \in \mathbb{R}^2 : d(x) \le \lambda\}.$$

• Entry time in $Z(\lambda)$ from an initial position $x \in \mathbb{R}^2$:

 $t^{x,\alpha,\varepsilon}(\lambda) := \begin{cases} \inf\{t \ge 0 : X^{x,\alpha,\varepsilon}(t) \in Z(\lambda)\}, & \text{ if } X^{x,\alpha,\varepsilon}(\cdot) \text{ reaches } Z(\lambda), \\ \\ \\ \infty, & \text{ otherwise.} \end{cases}$

Proposition (Invariant subsets and entry times)

1

$$d(X^{x,\alpha,\varepsilon}(t_2)) - d(X^{x,\alpha,\varepsilon}(t_1)) \leq (t_2 - t_1) \frac{|f|_{\infty}^2}{4} \varepsilon, \quad \forall \, 0 \leq t_1 \leq t_2$$

 $\ \, {\bf @} \ \, \lambda \geq \lambda_{\varepsilon} := \frac{1}{4} |f|_{\infty}^{4/3} \varepsilon^{4/3} \implies Z(\lambda) \text{ is invariant for } (S_{\varepsilon}) \text{ and }$

 $d(X^{x,\alpha,arepsilon}(t)) \leq rac{1}{4} |f|_\infty^{4/3} arepsilon^{4/3}, \quad ext{for all } x \in \Gamma ext{ and } t \geq 0.$

 $d(x) > \lambda_{\varepsilon} \implies d(X^{x,\alpha,\varepsilon}(t_2)) \le d(X^{x,\alpha,\varepsilon}(t_1)), \ \forall \ 0 \le t_1 \le t_2 \le t^{x,\alpha,\varepsilon}(\lambda_{\varepsilon})$

• For any $\gamma < 1$ and ε small enough, we have $t^{x,\alpha,\varepsilon}(\varepsilon^{\gamma}) \leq \frac{1}{2}\sqrt{d(x)}\varepsilon^{1-\gamma}$

() For any $\lambda > 0$ and T > 0, there exists $C = C(T, |f|_{\infty}, |x|)$ such that

$$t^{x,lpha,arepsilon}(\lambda) \leq Crac{arepsilon}{\lambda}$$

Qualitative properties of the trajectories $X^{x,\alpha}$ Behavior of the trajectories passing through O with constant controls

Take $e_{\theta} = (\cos \theta, \sin \theta)$ and consider a trajectory $X^{x,\alpha}$ such that

 $X^{ imes,lpha}(t_0) = O$, for some $t_0 \ge 0$,

and $\alpha(t) \equiv e_{\theta}$ in some interval $[t_0 - \tau, t_0 + \tau]$.

• If $x \neq 0$, scaling and permutation arguments allow to assume $x = (0, 1) = e_N$

Lemma (Scaling property)

$$X^{x,e_ heta,arepsilon}(t)=rac{1}{
ho}X^{
ho x,e_ heta,
ho^3arepsilon}(
ho t), \quad orall
ho>0$$

$$(S_{\varepsilon}) \begin{cases} \dot{X}_{1}^{\varepsilon}(t) = \cos \theta - \frac{2}{\varepsilon} X_{1}^{\varepsilon}(t) (X_{2}^{\varepsilon}(t))^{2}, \\ \dot{X}_{2}^{\varepsilon}(t) = \sin \theta - \frac{2}{\varepsilon} (X_{1}^{\varepsilon}(t))^{2} X_{2}^{\varepsilon}(t), \quad t > 0. \\ X(0) = x. \end{cases}$$

Proposition (Trajectories starting from O)

Let $\alpha(t) \equiv e_{\theta}$ for $\theta \in [0, 2\pi]$ and x = O. Then, $\omega(O, e_{\theta}) = \{X^{O, e_{\theta}}\}$ and :

(Non bisector case, $\theta \notin \{\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}\}$) If $i \in \{E, N, W, S\}$ s.t. $\langle e_{\theta}, e_i \rangle > \max_{j \neq i} \langle e_{\theta}, e_j \rangle$, then, $X^{O, e_{\theta}}$ enters the branch i:

$$X^{O,e_{\theta}}(t) = \langle e_{\theta}, e_i \rangle t e_i, \quad \forall t \geq 0.$$

(Bisector case, $\theta \in \{\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}\}$) If $i \neq j$

s.t. $\langle e_{\theta}, e_i \rangle = \langle e_{\theta}, e_j \rangle$, then, $X^{O, e_{\theta}}$ remains at O:

 $X^{O,e_{\theta}}(t) = O, \quad \forall t \geq 0.$

Proposition (Trajectories starting inside a branch)

Let $\alpha(t) \equiv e_{\theta}$ for $\theta \in [0, 2\pi]$ and $x = e_N$. Then, $\omega(e_N, e_{\theta}) = \{X^{e_N, e_{\theta}}\}$ and :

2 $\theta \in (\pi, \frac{5\pi}{4}] \implies X^{e_N, e_{\theta}}$ enters the branch W after passing through O :

$$X^{e_N,e_\theta}(t) = \begin{cases} (0,1+(\sin\theta)t) & \text{if } t \in [0,(-\sin\theta)^{-1}], \\ \\ ((\cos\theta)t,0) & \text{if } t \in [(-\sin\theta)^{-1},\infty). \end{cases}$$

 $\begin{array}{l} \textcircled{O} \quad \theta \in \left(\frac{5\pi}{4}, \frac{7\pi}{4}\right) \implies X^{e_N, e_\theta} \ \text{continues into the branch S after passing through} \\ O: \\ X^{e_N, e_\theta}(t) = \left(0, 1 + (\sin \theta)t\right) \quad \forall t \ge 0. \end{array}$

• $\theta \in [\frac{7\pi}{4}, 2\pi) \implies X^{e_N, e_\theta}$ enters the branch E after passing through O.

Some elements of the proof $X^{e_N,e_\theta}(t) = (1 + (\sin \theta)t)e_N$ for all $t \in [0, \underline{t} := \inf\{s \ge 0 : X^{e_N,e_\theta}(s) = O\}]$

Keystone to obtain the result :

prove that, for $t > (-\sin \theta)^{-1}$, $X_1^{e_N, e_\theta, \varepsilon}(t) \le -\eta$ (resp. $X_2^{e_N, e_\theta, \varepsilon}(t) \le -\eta$) for some $\eta > 0$ independent of ε .

Lemma

Let $\theta \in (\pi, \frac{3\pi}{2}]$. There exists $t_{\varepsilon} \in (0, (-\sin \theta)^{-1}]$ such that

$$\eta_arepsilon:=X_1^{e_N,e_ heta,arepsilon}(t_arepsilon)\leq 0 \quad ext{and} \quad X_2^{e_N,e_ heta,arepsilon}(t_arepsilon)=0,$$

and, for all $t \geq t_{\varepsilon}$, $X^{e_N,e_{\theta},\varepsilon}(t) \in \{x_1 \leq 0\} \cap \{x_2 \leq 0\}$

Lemma

Let $\theta \in (\pi, \frac{3\pi}{2}]$. There exists $\gamma > 0$ (independent of ε) such that

$$-\frac{3}{2}\frac{(-\cos\theta)}{(-\sin\theta)^{2/3}}\varepsilon^{1/3} \leq \eta_{\varepsilon} = X_1^{e_{\mathcal{N}},e_{\theta},\varepsilon}(t_{\varepsilon}) \leq -\gamma\varepsilon^{1/3}$$

Lemma

Let $\theta \in \left(\frac{5\pi}{4}, \frac{3\pi}{2}\right]$. For $0 < \nu \leq 1$, define

$$\mathcal{C}_2^{\varepsilon,\nu} := \left\{ x = (x_1, x_2) \in \mathbb{R}^2 : F_2^{\varepsilon}(x, e_{\theta}) = \sin \theta - \frac{2}{\varepsilon} x_1^2 x_2 \le (1-\nu) \sin \theta \right\}.$$

There exist $0 < \nu < 1$ sufficiently close to 1, and $\rho > 0$ small enough, independent of ε , such that the set

$$\mathcal{C}_{2}^{\varepsilon,\nu} \cap \{x_{2} \le x_{1} + \rho \varepsilon^{1/3}\} \cap \{x_{1} \le 0\} \cap \{x_{2} \le 0\}$$

is invariant for (S_{ε}) .

FIGURE -

Failure of the semigroup property

The limit trajectories $X^{x,\alpha}$ do not satisfy the semigroup property and are not stable.

Corollary

and

Take $x \in \Gamma$ and $\alpha \in \mathcal{A}_x$.

(Failure of the semigroup property) We may have

 $X^{x,\alpha} \in \omega(x,\alpha)$

$$X^{X^{x,\alpha}(t),\alpha(t+\cdot)} \in \omega(X^{x,\alpha}(t),\alpha(t+\cdot))$$
 for some $t > 0$

$$X^{X,lpha}(t+s)
e X^{X^{X,lpha}(t),lpha(t+\cdot)}(s)$$

(Instability) It can happen that x_n → x and X^{x_n,α} converges locally uniformly in (0,∞) to some Y ≠ X^{x,α}.

Take α(t) ≡ e_{5π/4} and x = e_N. Then, X^{x,α}(t) is explicit and, in particular, for s ≥ 0,

$$X^{x,\alpha}(\sqrt{2}+s) = (-1 - 2^{-1/2}s, 0) \neq O \equiv X^{O,\alpha}(s) = X^{X^{x,\alpha}(\sqrt{2}),\alpha(\sqrt{2}+\cdot)}(s)$$

• Replace the starting point $x = e_N$ with $x_n = \frac{1}{n}e_N \to O$ as $n \to \infty$. This provides a sequence of trajectories $X^{x_n,\alpha}$ still going to the branch W whereas $X^{O,\alpha} \equiv O$ is stuck at O.

Perspectives

• Uniqueness of the limit $(X^{x,\alpha}, k^{x,\alpha})$

• The proof of $V^{\varepsilon} \to \overline{V}$ relies on some optimal control techniques. Is it possible to obtain the result by PDE techniques, passing to the limit directly in the viscosity inequalities satisfied by V^{ε} ?

• Weaken the additional assumptions

 $\overline{B}(0,\eta) \subset f(x,A)$ for some $\eta > 0$

and

$$\ell(x,a) = \ell(x), \quad \forall (x,a) \in \mathbb{R}^2 \times A$$

More general networks

Thank you for your attention !