Solutions to the Hamilton-Jacobi equation for dynamic optimization problems with discontinuous time dependence

Piernicola Bettiol

University of Brest

ANR Journees COSS 2024 ´

Rennes 03rd–04th October 2024

 QQQ

Outline of the talk

- Dynamic Optimization problems with discontinuous time dependence and Hamilton-Jacobi equation
- A characterization of the value function and Hamilton-Jacobi equation
- **•** Optimal Control
- **Calculus of Variations**

joint work with J. Bernis, C. Mariconda, R. Vinter

 $2Q$

重

4 何 ト 4 ヨ ト 4 ヨ ト

Consider the optimal control problem:

$$
(P_{S,x_0})\left\{\begin{array}{l}\text{Minimize } \int_S^T L(t,x(t),\dot{x}(t))\;dt + g(x(T))\\ \text{over arcs } x(.)\in W^{1,1}([S,T];\mathbb{R}^n)\text{ satisfying }\\ \dot{x}(t)\in F(t,x(t))\quad \text{a.e. } t\in [S,T]\\ x(S)=x_0,\end{array}\right.
$$

Embed in family of problems, parameterized by initial data

$$
(P_{t,x})\begin{cases}\text{ Minimize } \int_t^T L(t,x(t),\dot{x}(t)) dt + g(x(T)) \\ \text{over arcs } x(.) \text{ s.t. } \dot{x}(s) \in F(s,x(s)), \quad x(t) = x\end{cases}
$$

Define
$$
V(t,x) = \ln(f_{t,x})
$$
 Value Function

ヨメ メヨメ

É

$$
V(t,x) = \ln f(P_{t,x}) \left\{ \begin{array}{l} \text{Minimize} \ \int_t^T L(t,x(t),\dot{x}(t)) \ dt + g(x(T)) \\ \text{over arcs } x(.) \ \text{s.t.} \ \dot{x}(s) \in F(s,x(s)), \ \ x(t) = x \end{array} \right.
$$

A classical issue

Characterize the value function as a solution (possibly unique) in a generalized sense of the HJE equation associated with (*Pt*,*^x*)

PDE of Dynamic Programming: *V*(., .) is a solution to

$$
(HJE) \left\{ \begin{array}{l l} \nabla_t V(t,x) + \min_{v \in F(t,x)} [\nabla_x V(t,x) \cdot v + L(t,x,v)] = 0 \\ \nabla_t V(t,x) = g(x) \quad \forall x \in \mathbb{R}^n. \end{array} \right.
$$

 299

E.

Characterize the value function as solution to HJE, in a generalized sense. **Two different classical paths:**

- **viscosity solutions approach:** (Crandall-Lions, Evans, Barles, ... ANR COSS members,...)
	- show that the value function is a viscosity solution (Frêchet sub/super-gradients, test-functions)
	- **•** prove directly (without consideration of state trajectories) that the relevant HJE equation has a unique viscosity solution (comparison results)
- **system theoretic approach:** (Clarke, Frankowska, Vinter,
	- ... ANR COSS members,...)
		- intimately connected with (monotonicity) properties of state trajectories
		- invariance (viability) theorems are employed to show that an arbitrary generalized ('proximal', 'Dini') solution to the HJE simultaneously majorizes and minorizes the value function and, therefore, coincides with it (**Nonsmooth Analysis**)

K ロ ⊁ K 伊 ⊁ K 君 ⊁ K 君 ⊁ …

E

 299

System theoretic approach - characterize lsc value functions

Theorem. [Frankowska, SICON 1993] *F* is required to be **continuous** w.r.t. time $(L = 0)$. Then, V is the unique lsc function satisfying the HJE, in the sense ('**Dini solution**'):

(i):
$$
\inf_{v \in F(t,x)} D_{\uparrow} V((t,x); (1,v)) \leq 0,
$$

for all $(t, x) \in ([S, T) \times \mathbb{R}^n) \cap \text{dom } V$
(ii):
$$
\sup_{v \in F(t,x)} D_{\uparrow} V((t,x); (-1, -v)) \leq 0,
$$

for all $(t, x) \in ((S, T] \times \mathbb{R}^n) \cap \text{dom } V$
(iii): $V(T, x) = g(x)$ for all $x \in \mathbb{R}^n$.

 $D_{\uparrow}V(.,.)\rightarrow$ the lower Dini directional derivative (also called contingent epi-derivative).

Equivalent conditions involving generalized solutions to HJE in a **Frêchet subgradient** sense were also given in [Frankowska, SICON 1993]

Refined version in terms of '**proximal subgradients**'

Theorem. [Clarke-Ledyaev-Stern-Wolenski, J. Dynam. Control Systems 1995] *F* is required to be **continuous** w.r.t. time $(L = 0)$. Then, V is the unique lsc function satisfying the HJE, in the sense ('**proximal solution**'):

(i): for all $(t, x) \in ((S, T) \times \mathbb{R}^n) \cap \text{dom } V$, $(\xi^0, \xi^1) \in \partial_P V(t, x)$

$$
\xi^0 + \inf_{v \in F(t,x)} \xi^1 \cdot v = 0,
$$

(ii): for all $x \in \mathbb{R}^n$,

$$
\liminf_{\{(t',x')\to(S,x):t'>S\}}V(t',x')=V(S,x)
$$

and

$$
\liminf_{\{(t',x')\to(T,x):t'
$$

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

重

 298

$$
V(t,x) = \ln(fP_{t,x}) \left\{ \begin{array}{l} \text{Minimize } \int_t^T L(t,x(t),\dot{x}(t)) \, dt + g(x(T)) \\ \text{over arcs } x(.) \text{ s.t. } \dot{x}(s) \in F(s,x(s)) \, x(t) = x \end{array} \right.
$$

→ *g* : R *ⁿ* → R ∪ {+∞} is **extended valued**; incorporates an implicit **terminal constraint**

$$
x(T)\in C\,,
$$

where $C := \{x \in \mathbb{R}^n : g(x) < +\infty\}$ is a closed set.

 \Rightarrow It is necessary to consider lower semicontinuous solutions (lsc) to HJE

K ロ ⊁ K 伊 ⊁ K 君 ⊁ K 君 ⊁ …

ミー $2Q$

Discontinuous time-dependent problems

Generalized solution to HJE in an 'almost everywhere' sense?

Example. Consider $(L = 0)$

$$
\left\{\begin{array}{l} \text{Minimize } g(x(1)) := x(1) \\ \text{over arcs } x(.) \in W^{1,1}([0,1];\mathbb{R}) \text{ s.t.} \\ \dot{x}(t) = 0 \quad \text{a.e. } t \in [0,1] \\ x(0) = x_0 \end{array}\right.
$$

The **value function** is $V(t, x) = x$ for all (t, x) .

However

$$
W(t,x) := \left\{ \begin{array}{ll} x-1 & \text{if } t \leq \frac{1}{2} \\ x & \text{if } t > \frac{1}{2} \end{array} \right.
$$

is also an lsc function that is a '**Dini solution**' in the 'almost everywhere' sense: we exclude consideration of the troublesome point $\frac{1}{2}$ at which $W(t, x)$ fails to satisfy conditions (i) and (ii) above.

⇒ the **value function is not the unique lsc Dini/proximal solution in the almost everywhere sens[e](#page-7-0)**.

 QQQ

The **non-uniqueness issue** can be circumvented by restricting candidate solutions *V*(., .) to have the following regularity property ([Frankowska, Plaskacz and Rzezuchowski, JDE 1995]):

(EPI) $t \to epi V(t,.)$ is absolutely continuous.

 \rightarrow epi $V(t, .) := \{(\alpha, x) : \alpha \geq V(t, x)\}\$ and 'absolute continuity' means that there exists an integrable function $\gamma(.) : [S, T] \to \mathbb{R}$ such that

$$
d_H(\textup{epi }V(s,.),\textup{epi }V(t,.))\leq\int_{[\mathsf{s},t]}\gamma(\sigma)d\sigma\,,\quad\text{for all}\;\;[\mathsf{s},t]\subset[\mathcal{S},\mathcal{T}]\,.
$$

 $(d_H(...))$ denotes the Hausdorff distance.)

 \rightarrow [Vinter-Wolenski, SICON 1990]: HJ theory for optimal control problems with data measurable in time ('verification Thm.')

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

The 'almost everywhere' HJE theory of Frankowska et al. covers a broad class of optimal control problems for which $t \rightarrow F(t, x)$ is discontinuous.

BUT it leaved open the following **question**:

For the special case, when $t \to F(t, x)$ and $t \to L(t, x, v)$ *have everywhere one-sided limits and is continuous on the complement of a zero-measure subset of* [*S*, *T*]*, can we provide a characterization of the value function as a unique lsc* **'generalized solution', without imposing the a priori regularity condition (EPI) on** *V*(., .)*?*

Positive answers: [P.B.-Vinter, SICON 2017], [Bernis-P.B., ESAIM COCV 2020], [Bernis-P.B.-Vinter, JDE 2022], [Bernis-P.B. JCA 2023], [P.B.-Vinter, Springer SMM 2024]

K ロ ト K 母 ト K ヨ ト K ヨ ト

Our framework - Enter also a state constraint

$$
(P)\left\{\begin{array}{l}\text{Minimize } \int_t^T L(t,x(t),\dot{x}(t))\;dt + g(x(T))\\ \text{over arcs } x \in W^{1,1}([S,T];\mathbb{R}^n)\text{ satisfying} \\ \dot{x}(t) \in F(t,x(t)) \quad \text{a.e. } t \in [S,T] \\ x(t) \in A \quad \text{for all } \; t \in [S,T] \quad \leftarrow \quad \text{state constraint} \\ x(S) = x_0\,. \end{array}\right.
$$

- \rightarrow state constraint: A is a nonempty closed set in \mathbb{R}^n
- \rightarrow the Lagrangian *L* is merely continuous w.r.t. *x*

 \rightarrow \Rightarrow \rightarrow

重

Example: A Growth/Consumption Model

A 'growth versus consumption' problem of neoclassical macro-economics, based on the Ramsey model of economic growth.

Question: what balance should be struck between investment and consumption to **maximize overall investment in social programmes** over a fixed period of time?

$$
\left\{\begin{array}{l}\text{Maximize } \int_0^T (1-u(t))x^{\alpha}(t)dt\\ \text{subject to}\\ \dot{x}(t)=-ax(t)+bu(t)x^{\alpha}(t) \quad \text{for a.e. } t\in[0,T],\\ u(t)\in[0,1] \quad \text{for a.e. } t\in[0,T],\\ x(t)\geq 0 \text{ for all } t\in[0,T],\\ x(0)=x_0\ .\end{array}\right.
$$

Here, $a > 0$, $b > 0$, $x_0 \ge 0$ and $\alpha \in (0, 1)$ are given constants and [0, *T*] is a given interval.

K ロ ⊁ K 伊 ⊁ K 君 ⊁ K 君 ⊁ …

重

 299

A Growth/Consumption Model...

$$
\left\{\begin{array}{l} \text{Maximize} \ \int_0^T (1-u(t))x^{\alpha}(t)dt \\ \text{subject to} \\ \dot{x}(t)=-ax(t)+bu(t)x^{\alpha}(t) \quad \text{for a.e. } t\in[0,T], \\ u(t)\in[0,1] \quad \text{for a.e. } t\in[0,T], \\ x(t)\geq 0 \text{ for all } t\in[0,T], \\ x(0)=x_0 \ .\end{array}\right.
$$

Data/model interpretation:

x → **global economic output** $r(x) = bx^{\alpha} \rightarrow$ financial return from economic output *x* −*ax* → fixed costs reducing growth *u* → **the proportion to invest in industry** 1 − *u* → **the proportion to invest in social programmes**

 \overline{AB} \rightarrow \overline{B} \rightarrow \overline{B} \rightarrow

 QQQ

A Growth/Consumption Model...

$$
\begin{cases}\n\text{Minimize} & -\int_0^T L(y(t), \dot{y}(t)) dt \\
\text{subject to} \\
\dot{y}(t) \in F(y(t)) \quad \text{for a.e. } t \in [0, T], \\
-y(t) \leq 0 \text{ for all } t \in [0, T], \leftarrow \quad \text{state constraint} \\
y(0) = y_0 \,.\n\end{cases}
$$

 \rightarrow transformation $y = x^{1-\alpha}$

$$
F(y) := \{v : v = (1 - \alpha)(-ay + bu) \text{ for some } u \in [0, 1]\} \text{ and}
$$

$$
L(y, v) := (1 - b^{-1}((1 - \alpha)^{-1}v + ay))y^{\frac{\alpha}{1 - \alpha}}.
$$

Rmk: *L* is NOT Lipschitz in *y* (in general), only continuous...

御き メミメメ ミメー

重

 299

Our Hypotheses

(H1): $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is lsc, $F: [S, T] \times \mathbb{R}^n \to \mathbb{R}^n$ takes closed, convex, non-empty values, $F(., x)$ is \mathcal{L} -measurable for all $x \in \mathbb{R}^n$, L \colon $[S, T] \times \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ is $\mathcal{L}\times\mathcal{B}^{n+n}$ -measurable and $L(t,x,.)$ is convex for every $t \in [S, T]$ and $x \in \mathbb{R}^n$, **(H2):** (i) there exists $c_F \in L^1(S, T)$ such that

$$
F(t,x) \subset c_F(t)(1+|x|) \mathbb{B}
$$

for all $x \in \mathbb{R}^n$ and for a.e. $t \in [S, T]$,
and

(ii) for every $R_0 > 0$, there exists $c_0 > 0$ such that

 $F(t, x) \subset c_0 \mathbb{B}$ for all $(t, x) \in [S, T] \times R_0 \mathbb{B}$,

イロメ イ部メ イ君メ イ君メー

 E 990

Hypotheses...

(H3): (i) for every $R_0 > 0$, there exists a modulus of continuity $\omega(.) : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ and $k_{\mathsf{F}} \in L^1(\mathcal{S},\mathcal{T})$ such that

$$
d_H(F(t,x'),F(t,x)) \leq \omega(|x-x'|) \quad \text{for all } x,x' \in R_0 \mathbb{B} ,
$$
 and

(ii)
$$
F(t,x') \subset F(t,x) + k_F(t)|x-x'| \mathbb{B}
$$

for all $x, x' \in R_0 \mathbb{B}$ and a.e. $t \in [S, T]$,

(H4): (i) for each $s \in [S, T)$, $t \in (S, T]$ and $x \in \mathbb{R}^n$ the following one-sided set-valued limits exist and are non-empty:

$$
F(s^+,x):=\lim_{s'\downarrow s}F(s',x),\quad F(t^-,x):=\lim_{t'\uparrow t}F(t',x),
$$

and

(ii) and for a.e. $s \in [S, T]$ and $t \in (S, T]$ we have

$$
F(s^+,x)=F(s,x),\quad F(t^-,x)=F(t,x),\quad\text{for all }x\in\mathbb{R}^n
$$

.

 298

 $\left\{ \bigoplus_k x_k \in \mathbb{R}^n \right\}$, $\left\{ \bigoplus_k x_k \in \mathbb{R}^n \right\}$

(H5): (i) for each $s \in [S, T)$, $t \in (S, T]$, $x \in \mathbb{R}^n$, $v \in \mathbb{R}^n$ the following limits exist

 $L(s^+, x, v), L(t^-, x, v)$

(ii) for a.e. $s \in [S, T]$ and $t \in (S, T]$ we have

 $L(s^+, x, v) = L(s, x, v), \quad L(t^-, x, v) = L(t, x, v)$

(iii) there exist $c_L \geq c_0$ (c_0 is the constant of (H2)(ii)), $M_L > 0$ and a modulus of continuity ω_I such that

 $|L(t, x, v)| \leq M_l$, for all $(t, x, v) \in [S, T] \times R_0 \mathbb{B} \times 2c_l \mathbb{B}$

and

 $|L(t, x', v) - L(t, x, v)| \leq \omega_L(|x - x'|)$, for all $x, x' \in R_0 \mathbb{B}$, $t \in [S, T]$ and $v \in c \in \mathbb{B}$.

4 ロ > 4 団 > 4 ミ > 4 ミ > 三 ミ - 9 Q Q

F(\cdot , *x*) is of **bounded variation (BV)** uniformly over $x \in R_0 \mathbb{B}$, if

 $d_H(F(s, x), F(t, x)) \leq \eta(t) - \eta(s), \forall [s, t] \subset [S, T], \ x \in R_0 \mathbb{B}$

for some non-decreasing function of bounded variation $\eta : [S, T] \rightarrow [0, \infty)$

Remark If *F*(·, *x*) is of **bounded variation (BV)** uniformly over $x \in R_0$ B then $t \to F(t, x)$ has everywhere one-sided limits and is continuous on the complement of a zero-measure subset of [*S*, *T*], i.e. **(H4) is satisfied**

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ 三重 → 約 Q @

Constraint qualifications

 $(CQ)_{BW}$: There exists a modulus of continuity $\tilde{\theta}(\cdot)$, such that given any interval $[t_0, t_1] \subset [S, T]$, any *F*-trajectory $\hat{x}(\cdot)$ on $[t_0, t_1]$ with $\hat{x}(t_1) \in A$, and any $\rho > 0$ such that ρ > max{ $d_A(\hat{x}(t))$: $t \in [t_0, t_1]$, we can find an *F*-trajectory *x*(\cdot) on [t_0 , t_1] such that *x*(t_1) = $\hat{x}(t_1)$, $x(t) \in \text{int } A$ for all $t \in [t_0, t_1)$ and

$$
\|\hat{X}-X\|_{W^{1,1}(t_0,t_1)}\leq \tilde{\theta}(\rho).
$$

 $(CQ)_{FW}$: There exists a modulus of continuity $\theta(\cdot)$, such that given any interval $[t_0, t_1] \subset [S, T]$, any *F*-trajectory $\hat{x}(\cdot)$ on $[t_0, t_1]$ with $\hat{x}(t_0) \in A$, and any $\rho > 0$ such that $\rho \geq$ max $\{d_A(\hat{x}(t)) : t \in [t_0, t_1]\}$, we can find an *F*-trajectory *x*(·) on $[t_0, t_1]$ such that $x(t_0) = \hat{x}(t_0)$, *x*(*t*) ∈ int *A* for all *t* ∈ (t_0, t_1] and

$$
\|\hat{x} - x\|_{W^{1,1}(t_0,t_1)} \leq \theta(\rho).
$$

イロメ イ団メ イヨメ イヨメー

重

Geometric Conditions for $(CQ)_{BW}$ and $(CQ)_{FW}$

The 'outward' and 'inward' pointing conditions ((OPC) and (IPC)) + 'additional hypotheses on the data' yield 'interiority' hypotheses: either 'backward' $(CQ)_{BW}$ or 'forward' $(CQ)_{FW}$

(OPC): for each $s \in [S, T)$, $t \in (S, T]$ and $x \in \partial A$,

 $F(t^-, x) \cap (-\text{int } T_A(x)) \neq \emptyset$, $F(s^+, x) \cap (-\text{int } T_A(x)) \neq \emptyset$;

(IPC): for each $s \in [S, T)$, $t \in (S, T]$ and $x \in \partial A$,

 $F(t^-, x) \cap \text{int } T_A(x) \neq \emptyset$, $F(s^+, x) \cap \text{int } T_A(x) \neq \emptyset$.

The **Clarke tangent cone** to *A* at *x*:

$$
T_A(x) := \liminf_{t \downarrow 0, y \stackrel{A}{\to} x} t^{-1}(A - y).
$$

4 ロ > 4 団 > 4 ミ > 4 ミ > 三 ミ - 9 Q Q

Characterization of lsc Value Functions

Theorem 1 [Bernis-P.B.-Vinter, JDE 2022]

Assume (H1)–(H5) and $(CQ)_{BW}$. Take a function $V: [S, T] \times \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$. Then, assertions (a)-(b)-(c) below are equivalent:

- **(a)** *V* is the value function for (*P*).
- **(b)** *V* is lsc on $[S, T] \times \mathbb{R}^n$ and
	- **(i)** for all (*t*, *x*) ∈ ([*S*, *T*) × *A*) ∩ dom *V*

$$
\inf_{v\in F(t^+,x)}\left[D_\uparrow V((t,x);(1,v))+L(t^+,x,v)\right] \leq 0,
$$

(ii) for all (*t*, *x*) ∈ ((*S*, *T*] × int*A*) ∩ dom *V*

$$
\sup_{v \in F(t^-,x)} \left[D_\uparrow V((t,x);(-1,-v)) - L(t^-,x,v) \right] \;\leq\; 0,
$$

(iii) for all *x* ∈ *A*

$$
\liminf_{\{(t',x')\rightarrow (T,x)\;:\;t'
$$

イロメ イ団メ イヨメ イヨメー

重 2990

Characterization of lsc Value Functions...

(c) V is lsc on
$$
[S, T] \times \mathbb{R}^n
$$
 and
\n(i) for all $(t, x) \in ((S, T) \times A) \cap \text{dom } V, (\xi^0, \xi^1) \in \partial_P V(t, x)$
\n
$$
\xi^0 + \min_{v \in F(t^+, x)} \left[\xi^1 \cdot v + L(t^+, x, v) \right] \leq 0,
$$

(ii) for all $(t, x) \in ((S, T) \times \text{int } A) \cap \text{dom } V$, $(\xi^0, \xi^1) \in \partial_P V(t, x)$

$$
\xi^0+\min_{v\in F(t^-,x)}\left[\xi^1\cdot v+L(t^-,x,v)\right]\geq 0,
$$

(iii) for all $x \in A$,

$$
\liminf_{\{(t',x')\to(S,x):t'>S\}}V(t',x')=V(S,x)
$$

and

$$
\liminf_{\{(t',x')\to (T,x')\colon t'
$$

K 크리 X 프레이프 / 프레이프 / 주의 O 프레이프

Theorem 2 [Bernis-P.B.-Vinter, JDE 2022]

Assume (H1)–(H5) and and (*CQ*)*FW* are satisfied. Assume, furthermore that *g* **is continuous on** *A*. Let $V : [S, T] \times \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be an extended valued function. Then the assertions (a), (b) and (c) of Theorem 1 remain equivalent.

Questions:

- Exchange the limits of *F* and *L*?
- Suppose that (IPC)+'additional hypotheses' ⇒ (*CQ*)*FW* is in force. Can we remove *g* **is continuous on** *A*?

イロメ イ団メ イヨメ イヨメー

B

Exchange the limits of *F***?**

Example 1. Consider the optimal control problem $(L = 0,$ $A = \mathbb{R}$

$$
\left\{\begin{array}{l} \text{Minimize } g(x(1)) := x(1) \\ \text{over arcs } x(.) \in W^{1,1}([t_0,1];\mathbb{R}) \text{ s.t.} \\ \dot{x}(t) \in F(t) \quad \text{a.e. } t \in [t_0,1] \\ x(t_0) = x_0 \end{array}\right.
$$

where $t_0 \in [0, 1]$, $x_0 \in \mathbb{R}$ and

$$
F(t) := \begin{cases} \left[-\frac{1}{2}, \frac{1}{2}\right] & \text{if } 0 \leq t \leq \frac{1}{2} \\ \left[-1, 1\right] & \text{if } \frac{1}{2} < t \leq 1 \end{cases}.
$$

The value function $V : [0, 1] \times \mathbb{R} \rightarrow \mathbb{R}$ is

$$
V(t,x) := \begin{cases} x + \frac{t}{2} - \frac{3}{4} & \text{if } 0 \leq t \leq \frac{1}{2} \\ x + t - 1 & \text{if } \frac{1}{2} < t \leq 1 \end{cases}.
$$

We have, as the result of a routine calculation:

$$
D_{\uparrow}V((1/2,0);(1,v)) = 1+v, \quad D_{\uparrow}V((1/2,0);(-1,-v)) = -\frac{1}{2}-v.
$$

1

Exchange the limits of *F***?...**

Consistent with conditions (b)(i) and (b)(ii) in Thm. above, *V* satisfies

$$
\inf_{v \in F(\frac{1}{2}^+)} D_{\uparrow} V((1/2,0); (1,v)) = \inf_{v \in [-1,1]} (1+v) = 0,
$$

$$
\sup_{v \in F(\frac{1}{2}^-)} D_{\uparrow} V((1/2,0); (-1,-v)) = \sup_{v \in [-\frac{1}{2},\frac{1}{2}]} (-\frac{1}{2}-v) = 0.
$$

On the other hand, switching roles of $F(\frac{1}{2})$ 2 $^{-}$) and $F(\frac{1}{2})$ 2 $^{+}$) in these calculations would give:

$$
\inf_{v \in F(\frac{1}{2}^-)} D_{\uparrow} V((1/2,0); (1,v)) = \inf_{v \in [-\frac{1}{2},\frac{1}{2}]} (1+v) = \frac{1}{2} (> 0) ,
$$

sup *D*_↑*V*((1/2, 0); (−1, −*v*)) = sup
-F(¹⁺) $v \in F(\frac{1}{2}^+)$ *v*∈[−1,1] $(-\frac{1}{2})$ $\frac{1}{2} - v$) = $\frac{1}{2}$ (> 0).

 \Rightarrow condition (b)(i) must involve the right limit $F(t^+,x)$ and (b)(ii) must involve the left limit $F(t^-,x)$.

'*g* **is continuous' hypothesis cannot be removed**

Example 2. Let $n = 1$, $[S, T] = [0, 1]$, $A = \{x \in \mathbb{R}, x \ge 0\}$, $F(t, x) \equiv [0, 1], L = 0$ and

$$
g(x) = \begin{cases} -x - 2, & \text{if } x \leq 0 \\ -x, & \text{if } x > 0. \end{cases}
$$

Observe that (H1)-(H5), (IPC) are each one of the supplementary hypotheses are satisfied. But the hypothesis '*g* is continuous' is violated. The value function is

$$
V(t,x)=\left\{\begin{array}{ll}t-x-1,&\text{if}\quad x>0\\-2,&\text{if}\quad x=0\\+\infty,&\text{if}\quad x<0\end{array}\right.
$$
 for all $(t,x)\in[0,1]\times\mathbb{R}$.

Notice that $\liminf_{\{(t',x')\to(1,0)\}\times(>0\}} V(t',x') = 0 \neq V(1,0) = -2.$ Therefore, the value function does not satisfy condition (iii) of (b) and (c).

K ロ ⊁ K 伊 ⊁ K 君 ⊁ K 君 ⊁ …

 \equiv 990

Viscosity Solution - 'Forward (CQ)'

Theorem 3 [Bernis-P.B., JCA 2023]

Assume (H1)–(H5) and and (*CQ*)*FW* are satisfied. Assume, furthermore that *g* **is continuous on** *A*. Then the value function *V* is characterized by

(d) *V* is continuous on [*S*, *T*] \times *A*, satisfies $V(t, x) = +\infty$ whenever $x \notin A$ and

(i) for all
$$
(t, x) \in (S, T) \times A
$$
, $(\xi^0, \xi^1) \in \partial_- V(t, x)$

$$
\xi^0+\inf_{v\in F(t^+,x)}\left[\xi^1\cdot v+L(t^+,x,v)\right]\leq 0\,;
$$

(ii) for all
$$
(t, x) \in (S, T) \times \text{int } A, (\xi^0, \xi^1) \in \partial_+ V(t, x)
$$

$$
\xi^0 + \inf_{v \in F(t^+, x)} [\xi^1 \cdot v + L(t^+, x, v)] \ge 0;
$$

(iii) for all $x \in A$

$$
\liminf_{\{(t',x')\to(S,x)\;:\;t'>S\}}V(t',x')=V(S,x),
$$
\nand\n
$$
V(T,x)=g(x).
$$
\nP. Section

\nDiscontinuous time-dependent HJE

 QQ

Viscosity Solution - 'Forward/Backward (CQ)'

Theorem 4 [Bernis-P.B., JCA 2023]

Assume (H1)–(H5), (*CQ*)*BW* **and** (*CQ*)*FW* . Suppose, in addition, that *g*|*^A* **is locally bounded and satisfies** ((*g*|*A*) ∗)[∗] = *g*|*A*. Then the value function *V* is characterized by (d)^{\prime} V is lsc on $[S, T] \times \mathbb{R}^n$ and locally bounded on $[S, T] \times A$, satisfies $V(t, x) = +\infty$ whenever $x \notin A$ and (i) for all $(t, x) \in (S, T) \times A$, $(\xi^0, \xi^1) \in \partial_- V(t, x)$ $\zeta^{0} + \inf_{v \in F(t^{+}, x)} [\zeta^{1} \cdot v + L(t^{+}, x, v)] \leq 0;$ (1) **(ii)** for all $(t, x) \in (S, T) \times \text{int } A, (\xi^0, \xi^1) \in \partial_+ V^*(t, x)$ ξ^{0} + $\inf_{v \in F(t^{+}, x)} [\xi^{1} \cdot v + L(t^{+}, x, v)] \ge 0$; (2)

(iii) for all $x \in A$

$$
\liminf_{\{(t',x')\to(S,x):\ t'>S\}}V(t',x')=V(S,x),
$$
\n
$$
(V_{|[S,T]\times A})^*(T,x)=(g_{|A})^*(x) \text{ and } V(T,x)=g(x).
$$

Notation

If *f* : R *^m* → R is a locally bounded function, we denote its **lower (resp. upper) semicontinous envelope** by:

$$
f_*(x) := \liminf_{y \to x} f(y) \quad \left(\text{resp. } f^*(x) := \limsup_{y \to x} f(y)\right).
$$

Take a lsc function $\varphi:\mathbb{R}^k\to\mathbb{R}\cup\{+\infty\}$ and points $x\in{\rm dom}\,\varphi.$ T he **Fréchet (strict) subdifferential**

$$
\partial_{-\varphi}(x):=\left\{\xi\in\mathbb{R}^k\;:\;\limsup_{y\to x}\frac{\xi\cdot(y-x)-(\varphi(y)-\varphi(x))}{|y-x|}\leq 0.\right\}
$$

If $\varphi:\mathbb{R}^k\to\mathbb{R}\cup\{-\infty\}$ is an upper semicontinuous function and $x \in \text{dom } \varphi$, then the **Fréchet superdifferential** of φ at *x* is

$$
\partial_+\varphi(x):=-\partial_-(-\varphi)(x)
$$

イロト (母) (ヨ) (ヨ)

Þ $2Q$

Growth/Consumption Example - Proximal solution

Write $V : [0, T] \times (0, \infty) \rightarrow \mathbb{R}$ the value function for (GC). Let $\psi : [0, \infty) \to [0, \infty)$ be the mapping

$$
\psi(x):=x^{1-\alpha}\,\text{ for }x\in[0,\infty)\,.
$$

Then

 $V(t, x) = (W \circ (Id, \psi))(t, x), \text{ for all } (t, x) \in [0, T] \times [0, \infty),$ where $W : [0, T] \times \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$ is the unique upper semicontinuous function s.t. $W(t, y) = -\infty$ whenever $y < 0$, **(i)** for all $(t, y) \in (0, T) \times [0, \infty)$, $(\xi^0, \xi^1) \in \partial^P W(t, y)$ $\xi^0+\sup\ \left(\xi^1\!\cdot\! (-a(1-\alpha)y\!+\!(1-\alpha)bu)\!+\!(1-u)y^{\frac{\alpha}{1-\alpha}}\right)\geq 0;$

$$
+\sup_{u\in[0,1]}(\varsigma\cdot(-a(1-\alpha)y+(1-\alpha)\beta y)+(1-\alpha)y^{1-\alpha})\leq 0,
$$

(ii) for all $(t, y) \in (0, T) \times (0, \infty)$, $(\xi^0, \xi^1) \in \partial^P W(t, y)$

$$
\xi^0+\sup_{u\in[0,1]}\left(\xi^1\cdot(-a(1-\alpha)y+(1-\alpha)bu)+(1-u)y^{\frac{\alpha}{1-\alpha}}\right)\leq 0;
$$

∂ *^PW*(*t*, *y*) = −∂*P*(−*W*)(*t*, *y*): **proximal su[pe](#page-29-0)[rd](#page-31-0)[if](#page-29-0)[fe](#page-30-0)[r](#page-31-0)[en](#page-0-0)[ti](#page-42-0)[al](#page-0-0)** [of](#page-42-0) *[W](#page-0-0)*

 QQQ

(iii) for all $y \in [0, \infty)$

$$
\limsup_{\{(t',y')\to(0,y):t'>0\}}W(t',y')=W(0,y)
$$

and

lim sup $\{(t', y') \rightarrow (T, x): t' < T, y' > 0\}$ $W(t', y') = W(T, y) = 0.$

イロメ イ団メ イヨメ イヨメー

 $E \Omega Q$

Growth/Consumption Example - Viscosity solution

W : [0, *T*] $\times \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$ is the unique upper semicontinuous function such that *W* is continuous on $[0, T] \times [0, \infty)$, $W(t, v) = -\infty$ whenever $v < 0$ and **(i)** for all $(t, y) \in (0, T) \times [0, \infty)$, $(\xi^0, \xi^1) \in \partial_+ W(t, y)$

$$
\xi^0+\sup_{u\in[0,1]}\left(\xi^1\cdot(-a(1-\alpha)y+(1-\alpha)bu)+(1-u)y^{\frac{\alpha}{1-\alpha}}\right)\geq 0;
$$

(ii) for all $(t, y) \in (0, T) \times (0, \infty)$, $(\xi^0, \xi^1) \in \partial_-W(t, y)$

$$
\xi^0+\sup_{u\in[0,1]}\left(\xi^1\cdot\left(-a(1-\alpha)y+(1-\alpha)bu\right)+(1-u)y^{\frac{\alpha}{1-\alpha}}\right)\leq 0;
$$

(iii) for all $y \in [0, \infty)$

$$
\limsup_{\{(t',y')\to(0,y),\,t'>0\}}W(t',y')=W(0,y)
$$

and

$$
W(T,y)=0.
$$

メタメ スミメ スミメー

ミー 2990 Consider the Calculus of Variations problem:

$$
(CV_{S,x_0})\left\{\begin{array}{l}\text{Minimize } \int_S^T L(t,x(t),\dot{x}(t)) \, dt + g(x(T))\\ \text{over arcs } x(.) \in W^{1,1}([S,T];\mathbb{R}^n) \text{ satisfying }\\ x(S) = x_0,\end{array}\right.
$$

Embed in family of problems, parameterized by initial data

$$
(CV_{t,x})\begin{cases} \text{Minimize } \int_t^T L(t,x(t),\dot{x}(t)) dt + g(x(T)) \\ \text{over arcs } x(.) \in W^{1,1} \text{ s.t. } x(t) = x \end{cases}
$$

Define
$$
V(t,x) = \ln f(CV_{t,x})
$$
 Value Function

メタメ メミメ メミメー

 2990

重

$$
V(t,x) = \ln f(CV_{t,x}) \left\{ \begin{array}{l} \text{Minimize } \int_t^T L(t,x(t), \dot{x}(t)) dt + g(x(T)) \\ \text{over arcs } x(.) \in W^{1,1} \text{ s.t. } x(t) = x \end{array} \right.
$$

Classical issues

- Establish regularity properties of the value function
- Characterize the value function as a solution in a generalized (possibly unique) sense of the HJE equation associated with (*CVt*,*^x*)

PDE of Dynamic Programming: *V*(., .) is a solution to

$$
(HJE)\left\{\begin{array}{ll}\nabla_t V(t,x)+\inf_{v\in\mathbb{R}^n}[\nabla_x V(t,x)\cdot v+L(t,x,v)]=0\\
b(t,x)\in (S,T)\times\mathbb{R}^n\\
b(t,x)=g(x)\quad\forall x\in\mathbb{R}^n\end{array}\right.
$$

イロメ イ団メ イヨメ イヨメー

重 $2Q$

Some results in the Calculus of Variations

- **Galbraith, SICON 2000** (Regularity assumptions directly on the Hamiltonian)
- **Dal Maso-Frankowska, ESAIM 2000, AMO 2003**
	- Autonomous case, $L = L(x, v)$ is Borel, locally bounded, superlinear and convex in v , g is lsc, $(CV_{t,x})$ has a minimizer for all (*t*, *x*)
	- the value function is lsc and a 'Dini' and a viscosity solution + a 'partial comparison' result (the value function is the greatest lcs Dini subsolution)

Plaskacz-Quincampoix, Top. Math. Non. An., 2002

- Nonautonomous case, *L* is continuous, locally bounded, superlinear and convex in *v*, Lipschitz regularity in *x*, (CV_{tx}) has a Lipschitz minimizer for all (t, x)
- the value function is lsc and a 'Dini', proximal and a viscosity solution + uniqueness if *V* is bounded from below

イロメ イ団メ イヨメ イヨメー

重

 299

Our Setting

- $\mathcal{L} : [\mathcal{S},\mathcal{T}] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$ is Lebesgue/Borel
- *L* is locally bounded and has linear growth from below: $\exists \alpha, d > 0$ s.t.

$$
L(s, y, v) \geq \alpha |v| - d
$$

Growth condition: for all $K \geq 0$,

$$
\lim_{\substack{|v|\to+\infty\\P(s,y,v)\in\partial_{\mu}\left(L\left(s,y,\frac{v}{\mu}\right)\mu\right)_{\mu=1}\neq\emptyset}} P(s,y,v)=-\infty \text{ unit. } |y|\leq K,
$$

meaning that for all $M \in \mathbb{R}$ there exists $R > 0$ such that $P(s, y, v) \leq M$ for all $(s, y, v) \in [S, T] \times \mathbb{R}^n \times \mathbb{R}^n$ with $|y|\leq K,\,|{\bf v}|\geq R,\,\partial_\mu (L({\bf s},{\bf y},\frac{{\bf v}}{\mu})\mu)_{\mu=1}\neq\emptyset$ and $P(s, y, v) \in \partial_{\mu}(L(s, y, \frac{v}{\mu})\mu)_{\mu=1}.$

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

 299

重

- \bullet (*CV*_{t,*x*}) has a minimizer for all (*t*, *x*)
- *L* has a **bounded variation** behaviour: there exist $\kappa, \mathcal{A} \geq \mathsf{0}, \gamma \in \mathsf{L}^1([S,T]),$ $\varepsilon_* > \mathsf{0}$ and a non-decreasing function $\eta : [S, T] \to [0, +\infty)$ satisfying, for a.e. $s \in [S, T]$

$$
|L(s_2, y, v) - L(s_1, y, v)| \leq \eta(s_2) - \eta(s_1) \\ + (\kappa L(s, y, v) + A|v| + \gamma(s)) |s_2 - s_1|
$$

whenever $s_1 \leq s_2$ belong to $[s - \varepsilon_*, s + \varepsilon_*] \cap [S, T]$, $y \in \mathbb{R}^n$, $v \in \mathbb{R}^n$.

(ロ) (何) (ヨ) (ヨ) (

ミー $2Q$

Theorem 5 [Bernis-P.B.-Mariconda, 2024]

- *V* is lsc on $[S, T] \times \mathbb{R}^n$ and locally Lipschitz on $[S, T] \times \mathbb{R}^n$.
- *V* is a Dini and proximal solution
- \bullet If *U* is a Dini subsolution, then $U \leq V$.
- If, in addition, *L* is convex in *v* , *V* is bounded from below and is a Dini supersolution, then $V \leq U$. (This implication required a new invariance/viability theorem.)

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

重 2990

(a) *V* is a Dini solution in the following sense:

(i) for any $(t, x) \in ([S, T) \times \mathbb{R}^n) \cap \text{dom}(V)$, there exist $\epsilon_{t,x}, R_{t,x} > 0$ such that, for all $(t',x') \in ((t,x)+\epsilon_{t,x}\mathbb{B}) \cap ([S,T) \times \mathbb{R}^n) \cap \text{dom}(V)$, we can find $v' \in R_{t,x}$ ^{$\mathbb B$} satisfying:

$$
D_{\uparrow}V((t',x'),(1,v'))+L^{\flat}(t',x',v')\leq 0;
$$

(ii) for any $(t, x) \in ((S, T] \times \mathbb{R}^n) \cap \text{dom}(V)$

$$
\sup_{v\in\mathbb{R}^n}[\mathrm{D}_\downarrow V((t,x),(-1,-v))-L^\sharp(t,x,v)]\leq 0;
$$

(iii) for all $x \in \mathbb{R}^n$, $V(T, x) = g(x)$.

イロメ イ団メ イヨメ イヨメー

 \equiv 990

(b) *V* is a proximal solution in the following sense:

(i) for every $(t, x) \in ((S, T) \times \mathbb{R}^n) \cap \text{dom}(V)$, there exist ϵ _{tx}, R _{tx} > 0 such that, for all $(t',x') \in ((t,x)+\epsilon_{t,x}\mathbb{B}) \cap ([S,T) \times \mathbb{R}^n) \cap \text{dom}(V)$, we can find $v' \in R_{t,x}$ ^{$\mathbb B$} satisfying:

$$
\xi^0+\xi^1\cdot v'+L^{\flat}(t',x',v')\leq 0,\text{ for all }(\xi^0,\xi^1)\in\partial_PV(t',x')\,;
$$

(ii) for every $(t, x) \in ((S, T) \times \mathbb{R}^n) \cap \text{dom}(V)$:

$$
\xi^{0} + \inf_{V \in \mathbb{R}^{n}} \left[\xi^{1} \cdot V + L^{\sharp}(t, x, V) \right] \geq 0, \text{ for all } (\xi^{0}, \xi^{1}) \in \partial_{P} V(t, x);
$$
\n(3)

(iii) for every $x \in \mathbb{R}^n$,

$$
\liminf_{\{(t',x')\to(S,x):t'>S\}}V(t',x')=V(S,x),
$$

and

$$
\liminf_{\{(t',x')\to (T,x): t' < T\}} V(t',x') = V(T,x) = g(x).
$$

K ロ ⊁ K 伊 ⊁ K 君 ⊁ K 君 ⊁ …

重 $2Q$

Auxiliary Lagrangians

For every $(t, x, v) \in (S, T] \times \mathbb{R}^n \times \mathbb{R}^n$ we define

$$
L^{\sharp}(t, x, v) := \limsup_{h \downarrow 0} \frac{1}{h} \inf \left\{ \int_{t-h}^{t} L(\tau, z(\tau), \dot{z}(\tau)) d\tau \text{ s.t.} \right. \\ z \in W^{1,1}([t-h, t]; \mathbb{R}^n), \begin{cases} z(t) = x, \\ z(t-h) = x - hv \end{cases} \right\}.
$$

Similarly, for every $(t, x, v) \in [S, T) \times \mathbb{R}^n \times \mathbb{R}^n$ we define:

$$
L^{\flat}(t,x,v) := \liminf_{h\downarrow 0} \frac{1}{h} \inf \left\{ \int_t^{t+h} L(\tau,z(\tau),\dot{z}(\tau)) d\tau \text{ s.t.} \right\}
$$

$$
z \in W^{1,1}([t,t+h];\mathbb{R}^n), \left\{ \begin{aligned} z(t) &= x, \\ z(t+h) &= x+hv \end{aligned} \right\}.
$$

These are extensions to the nonautonomous case of the auxiliary Lagrangians defined in [Dal Maso-Frankowska, 2003].

重。 299

Thank you for your attention!

イロメ イ部メ イ君メ イ君メー

E

 299