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Motivation: Many agent system

In today’s interconnected world, systems involving numerous agents are prevalent.

Visual examples:

Crowd motion

Flocking Distributed Al systems



Other examples:

Financial market

Energy production Networks

3/54



Other examples:

Financial market

Energy production Networks

Challenge: How to introduce an optimality notion to these systems
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The MFG system

The mean field game system is given by
—diu—vAu+ H(x,Du) = F(x, m(t)) in (0, T)x R4
d¢m —vAm —div(mD,H(x,Du)) =0 in (0, T)x R4
m(0,x) = mg(x), u(T,x)=G(x,m(T)) inRd,

> The first equation is the Hamilton Jacobi Bellman equation for the agents’ value
function u.

> The second equation is the Fokker-Planck equation for the distribution of agents.

m(t) is the probability density of the state of players at time t

> mg € P(fRd) can be seen as the initial distribution of the agents.
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The MFG system

The mean field game system is given by

v vy VvYyy

—9d¢u—vAu + H(x,Du) = F(x, m(t)) in (0, T)x R4
d¢m —vAm —div(mD,H(x,Du)) =0 in (0, T)x R4
m(0,x) = mg(x), u(T,x)=G(x,m(T)) inRd,

The first equation is the Hamilton Jacobi Bellman equation for the agents’ value
function u.

The second equation is the Fokker-Planck equation for the distribution of agents.
m(t) is the probability density of the state of players at time t

mg € P(fRd) can be seen as the initial distribution of the agents.
The MFG equilibrium is (u, m) solution to the above system.
Forward-Backward system.

The linearized version of the HJB equation is the adjoint equation of the
Fokker-Plank equation.
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»> Impact of the theory:
@ Numerical analysis of PDEs makes possible the approximation of equilibria of complex
systems.
@ Construction of approximation of Nash equilibria (in feedback form) for N-persons games
through the solution of the MFG system.
@ Applications: finance, market economics (oil producers, carbon markets...), engineering
(smart grids...), crowd dynamics, socio-politics (learning, opinion formation etc...)
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Our contribution

Goal of this talk: Discuss some numerical methods to solve MFG
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Our contribution

Goal of this talk: Discuss some numerical methods to solve MFG

Vv Lagrange-Galerkin method to solve the first order MFG PDE system (v = 0).

v Newton iterations to solve the second order MFG PDE system (v > 0).
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Lagrange-Galerkin method for the first order MFG system

Joint work with E. Carlini and F. J. Silva
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First order MFG system

When v = 0 we have:

—d¢u+ H(x, Du) = F(x, m(t)) in (0, T)xRY,
d¢m —div(DpH(x, Du)m) =0 in (0, T)x RY, (MFG);
m(0,-)=mg, u(T,x)=G(x,m(T)) in R,
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First order MFG system

When v = 0 we have:

—d¢u+ H(x, Du) = F(x, m(t)) in (0, T)xRY,
d¢m —div(DpH(x, Du)m) =0 in (0, T)x RY, (MFG);
m(0,-)=mg, u(T,x)=G(x,m(T)) in R,

» When the Hamiltonian H is coercive, the existence of solutions has been studied in
Lasry-Lions’07 and in Cardaliaguet-Hadikhanloo'17.

> If H is not coercive, the existence question has been studied in
Achdou-Mannucci-Marchi-Tchou’20 and in Cannarsa-Mendico’20.

> Unlike the second order case, solutions to (MFG); are not regular in general, which
makes the analysis more complicated.
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Numerical methods

» Coercive Case:

e In Camilli-Silva’12, for H(x,p) = |p|2/2, a semi-discrete SL scheme is proposed and
convergence is shown.

e A fully-discrete semi-Lagrangian proposed in Carlini-Silva’14, for H(x, p) = |p|2/2, is shown
to converge when d = 1.

e Extensions to the case of fractional and non-local operators in
Chowdhury-Ersland-Jakobsen’22.

e Application to price formation MFG model by Ashrafyan-Gomes’24.

e An approximating MFG with discrete time and finite state space is proposed in
Hadikhanloo-Silva’l19. Convergence is obtained in general dimensions.

e Fourier methods, Nuberkyan, Saude ('19) and Liu, Jacobs, Li, Nuberkyan,Osher ("20)
»> Non-coercive case:

e See Gianatti-Silva’22 and Gianatti-Silva-Z'2023 where a relaxed definition of the
equilibrium is used and an approximation based on discrete time finite state MFG is
introduced.
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Lagrange-Galerkin method for the first order MFG system

» Main idea: Apply a semi-Lagrangian scheme to the HJB equation then couple it
with a Lagrange-Galerkin scheme for the continuity equation.
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Lagrange-Galerkin method for the first order MFG system

» Main idea: Apply a semi-Lagrangian scheme to the HJB equation then couple it
with a Lagrange-Galerkin scheme for the continuity equation.

> Assumptions:
e The Hamiltonian H is given by

H(x,p) = sup {—(a,p)—L(x,a)} forallx,pe RY,
aeRd

where L is of class C2, andforall x,a € [Rd, we have
L(x,a)< C(lal? +1),
IDcL(x,a) < C |a|2+1>,
C|bl? < D2,L(x,a)(b,b),
DEL(va)y,y) < c<|a|2 + 1>|y|2.

These assumptions on L imply that H has quadratic growth and
[DpH(x,p)l < C(1+|pl) forallx,pe RY.

A typical example is H(x, p) = a(x)|p|2 +(b(x), p), with a and b of class Cb2 and a bounded
from below by a strictly positive constant.
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e F and G are bounded, continuous, and for every u € Pl([Rd),
(Lip) |F(x, 1) = Fly, pl +1G(x, p) = Gly, p)l < Clx =y,
(SC) Flx+y,p)—2F(x, )+ F(x—y,u) < Clyl?,
(SC) G(x+y, 1) = 2G(x, u)+ G(x—y, ) < Clyl>.

Notice that no differentiability is assumed for F and G.

e mg has compact support and m € LP(RY) for some p € (1,00].
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Approximation to the HJB equation

Let u € C([0, T];P1(RY)) and consider the HJB equation
—diu+H(x,Du) = F(x, u(t)) in[0, T]x RY,

u(T,x) = G(x, w(T)) inRY,

If u[u] denotes its solution, then for every (t,x) € [0, T]x R,

T
ulp(t, x) =igf£ L(y(s) a(s)) +F(y(s), p(s)) ds + G(y(T), u(T))

Running cost Final cost

y satisfies p(s) = —a(s)in]s, T[, p(t)=x.
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Approximation to the HJB equation

Let u € C([0, T];P1(RY)) and consider the HJB equation
—diu+H(x,Du) = F(x, u(t)) in[0, T]x RY,

u(T,x) = G(x, w(T)) inRY,

If u[u] denotes its solution, then for every (t,x) € [0, T]x R,

T
ulpl(t,x) =if;fJ; L(y(s) a(s)) +F(y(s), p(s)) ds + G(y(T), u(T))

Running cost Final cost
y satisfies p(s) = —a(s)in]s, T[, p(t)=x.
Proposition:
The value function is uniformly bounded, and the following hold:

(Lip) u[p](t,x) = u[p](t, y)| < Clx - yl,
(SC)  u[pl(x +y, )= 2ulp)(x, u) + ulp)(x —y, u) < Clyl%.
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Semi-Lagrangian scheme for HJB equation

> u[u] satisfies the Dynamic Programming Principle:

t+h
u[plt,x) = inf {f (L) a(s) + Fy(s),pls)lds + ulul(e-+ h, y(e-+ )}
ael2(RAH)\ )¢

forallh € [0, T —t].
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Semi-Lagrangian scheme for HJB equation

> Set At >0 as the time step and let ty = kAt, k =0,---Nt.
> Semi-discrete DPP: let uy [p](x) =~ u[p](tk, x) be such that

lplx) = inf AL (x,a)+ (o ()] + i [p](x - aAt)
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Semi-Lagrangian scheme for HJB equation

> Set At >0 as the time step and let ty = kAt, k =0,---Nt.
> Semi-discrete DPP: let uy [p](x) =~ u[p](tk, x) be such that

Ul = inf AL (o a) + Flo ()] + e [)0x - aAt)

> Discretization in space: let Ax > O be the space step and let Ga, = {x; = iAx|i € Z9)
be the grid space.

Initial State
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Semi-Lagrangian scheme for HJB equation

> Set At >0 as the time step and let tk = kAt, k =0,---NT.
> Semi-discrete DPP: let uy [p](x) = u[p](tk, x) be such that

Ul = inf AL (o a) + Flo )] + e [)0x - aAt)

> Discretization in space: let Ax > be the space step and let Ga, = {x; = iAx|i € Z9) be
the grid space.

x —aAt

/’
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As in Carlini-S’14, given (At, Ax) we consider the following semi-Lagrangian scheme for
the HJB equation:

ug,j = inf {AtL(xi, a)+ E [Uks1,-](xi = Ata)} + AtF(x;, p(tk)),
acRd
Un,i = G(X,', P‘(T))r
where, given ¢ defined on Gax = {x; = Ax|i € z9)

Hel(x) = Z BL(x)p(x;), forall xeRY,

iezd

where {ﬁ,l |i € Z9) is the @ -basis defined on the regular mesh Ga,.

16/54



As in Carlini-S’14, given (At, Ax) we consider the following semi-Lagrangian scheme for
the HJB equation:

ug,j = inf {AtL(xi, a)+ E [Uks1,-](xi = Ata)} + AtF(x;, p(tk)),
acRd
Un,i = G(X,', P‘(T))r

where, given ¢ defined on Gax = {x; = Ax|i € z9)

Hel(x) = Z BL(x)p(x;), forall xeRY,

iezd
where {ﬁ,l |i € Z9) is the @ -basis defined on the regular mesh Ga,.

This scheme is shown to be consistent, stable, and preserves:
» (Lip) The Lipschitz property.

» (SC) The semiconcavity.
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Given € > 0 and a standard mollifier p,, we set A = (At, Ax, €) and

uB[u)(t %) = (pe + I[ug](x)  forall t € [ty tiy1),x € R

> uA[y] preserves the Lipschitz property.

»> The following semi-concavity estimate holds:

2
(D2 P U]t x)y, y) < C(l +(%) ]Iylz-

> Theorem: Under suitable assumptions on the parameters, if y, - pand A, — 0,
then u®n [#n] — u[p] uniformly over compact sets, and D, uln (pn] —
Dyu[p] a.e.
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Approximation to the continuity equation

Let us consider the following continuity equation

d¢m —div(DpH(x, Dxu[p])m)=0 in (0, T)x RY,
m(0) = mg.

Using the properties of u[u], one can show the existence of m[u] solution to the
continuity equation such that:

> m[u](t,-) has a compact support, independent of p.
» Mass conservation hold
Im[](t,)llLe < ClimgllLe, forallt €(0,T).

where C is independent of p.
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To discretize the MFG system, we focus on

d¢m —div(DpH(x, DXuA[,u])m) =0 in(0,T)xRY,
m(0) = mg.
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To discretize the MFG system, we focus on
dym —div(DpH(x, Dyu®[u))m)=0 in (0, T)xRY,
m(0) = mg.

A

Since u” is smooth w.r.t state, this equation has a unique solution

mAu)(t,) = A [0, )img,
where qDA[y](s, t, x) is the solution, at time t, of the ODE:
7(r) = =DpH((r), Deu® [kl p(r) in (s, T),
Y(s) =x.

Equivalently, for ¢ integrable with respect to mA[

Kl(s),

o P00 = | (@ pl(s, 20 dm A pl(s)(x)

(CE)
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To discretize the MFG system, we focus on
dym —div(DpH(x, Dyu®[u))m)=0 in (0, T)xRY,

m(0) = mg.

A

Since u” is smooth w.r.t state, this equation has a unique solution

mA[ul(t,) = @2 [u](0,t, ),
where qDA[y](s, t, x) is the solution, at time t, of the ODE:

Y(r) = =Dp H(r), D u®[pl(r, p(r)) in (s, T),
Y(s) =x.

Equivalently, for ¢ integrable with respect to mA[

Kl(s),

o P00 = | (@ pl(s, 20 dm A pl(s)(x)

> We approximate CDA[y](tk, tx+1, %) by explicite one-step Euler scheme

DR [](x) = x = AtDpH (x, Dy u [](t, x)).

(CE)
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> Let {Bj};czd be a FE basis and approximate mA[y](tk) by
1(tk, x Z M, i Bi(x
iezd
> Using this approximation and taking ¢ = g; in (CE), we get

D mens [ B0 @EIM)dx= )

iezd iezd

mk,f B (&P ](3))8 (x) dx
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> Let {Bj};czd be a FE basis and approximate mA[y](tk) by
MATul(tx) = ) miiBi(x).
iezd

> Using this approximation and taking ¢ = g; in (CE), we get

D mens [ BB Y i [ @R xdx

iezd iezd

> Let us choose f3; = [5,0 =g, where

E; = [xi — Ax/2, x; + Ax/2]9.
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> Let {Bj};czd be a FE basis and approximate mA[y](tk) by
MATul(tx) = ) miiBi(x).
iezd

> Using this approximation and taking ¢ = g; in (CE), we get

D mens [ BB Y i [ @R xdx

iezd iezd

> Let us choose f3; = ﬁlo =g, where
E; = [xi — Ax/2, x; + Ax/2]9.

This choice yields the following Lagrange-Galerkin scheme:
_ 1 0(pA
111 g L L BO(@L [ulx)) dx (o)

1 *
mo,i = W L,- mgq(x)dx.
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Interpretation of the scheme

> We observe that
L, PPN = [ g (0= £ 5 01w En)

= equivalent to the scheme introduced in Picolli-Tosin'11.

E;
/

(5 nopte))
Description of the scheme in the 2 dimensional case

21/54



> Given (my ;) solution to (LG), for t € [ty, tx41), let us define

MA[p] t, x) ( k+1 ) Z my i Bi(x ( ;ttk) Z Mi+1,i Bi (%)
d

iez

> MA[u] € C(0, T PH(RY)).

> There exists C* > 0 such that supp(M2[](t,-)) C B(0, C*).

> The map [0, T] 3 t > MA[u](t,-) € P1(RY) is Lipschitz continuous.
> If Ax = O(At) and At = O(e2), then

IMA )t NILe < CllmglLe.

The proof of the LP-stability mainly relies on the following facts:

> At/e small enough = ¢‘kA[;4] is one-to-one.

> The estimate on Dg, u™[p](ty,-) implies that

det(D,®2[p](x) ! <1+ CAt.
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Approximation of the MFG problem

Let uA[y] be the solution to the SL scheme and M2 the solution to the LG scheme, then:

» (MFQ); is discretized as follows:
Fi _MA A
ind p such that y = M%[y] (MFG)=.

Using the Brouwer’s fixed point theorem, we show that (MFG)A admits at least one
solution.

» Convergence holds in general state dimensions.

Let A, = (Atp, Axp,€5) €]0,00[3, let m™ be a solution to (MFG)An, and u” = u®[m,].
Assume that, as A, — 0, Ax, = o(At,) and At, = O(5,21). Then, up to some subsequence,
(u", m") converges to a solution (u*, m*) of (MFG) .
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Numerical results

» In order to implement the scheme, we follow Morton-Priestley-Stili'88 by considering
the following approximation called area weighting

Cb,é[lu](x) ~ x—AtDpH(xi,DXvA[y](tk,x,-)) if x € E;,

to obtain

L' OO [u]0)dx = B (@B ).
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Numerical results

» In order to implement the scheme, we follow Morton-Priestley-Stili'88 by considering
the following approximation called area weighting

Cb,é[lu](x) ~ x—AtDpH(xi,DXvA[y](tk,x,-)) if x € E;,

to obtain

L' OO [u]0)dx = B (@B ).

> We use Picard iterations to solve (MFG)A
> In the numerical test below, we set d = 2, and we consider the MFG problem defined
2
on [0,1]x[0,2]2, and set At = (Ax)3

mg(x) = IV(X())d"[O,Z]Z with v(x) = e 0?7001 4y xo =(0.75,0.75).
[0,2]2 v(X)dax
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We also consider

2
H(x,p)= %, G=0
and
F(x,m)= ymin(R,|x—xf|2) + (P * m)(x)
[ —— —_—

penalize the deviation from xf  encourage avoiding the crowd
with x¢ = (1.75,1.75).
In the figures below, we display the distributions for ¥ = 0.5 and y = 3.
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We also consider

2
H(x,p)= %, G=0
and
F(x,m)= ymin(R,|x—xf|2) + (po * m)(x)
[ — S —

penalize the deviation from xf  encourage avoiding the crowd
with x¢ = (1.75,1.75).
In the figures below, we display the distributions for ¥ = 0.5 and y = 3.
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Newton iterations for second order MFG system

Ongoing work with E. Carlini and F. J. Silva
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Newton iterations for second order MFG system

> We consider the second order MFG system
—d¢u—vAu+H(x,Du) = F(m(t,x)) inT9x[0,T]
d¢m —vAm —div(mHp(x,Du)) =0  in T9x[0,T] (MFG)>
m(x,0) = mg(x), u(x, T) = ur(x) inT9,

where

e v>0

o T stands for the flat torus R9/z4
e His a convex Hamiltonian

e Fislocal coupling
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Newton iterations for second order MFG system

> We consider the second order MFG system
—d¢u—vAu+H(x,Du) = F(m(t,x)) inT9x[0,T]
d¢m —vAm —div(mHp(x,Du)) =0  in T9x[0,T] (MFG)>
m(x,0) = mg(x), u(x, T) = ur(x) inT9,

where
e v>0
o T stands for the flat torus R9/z4
e His a convex Hamiltonian
e Fislocal coupling
» Our aim is:
to propose a new numerical scheme by discretizing a Newton method in
infinite dimension
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Numerical methods

» Y. Achdou, |. Capuzzo-Dolcetta ('10), Y. Achdou, F. Camilli, . Capuzzo-Dolcetta ('12),
Semi-implicit finite difference scheme computed through Newton iterations

» E. Carlini, F. J. Silva ("14, '15) Semi-Lagrangian scheme computed using
fixed point-type iterations
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Numerical methods

v

Y. Achdou, |. Capuzzo-Dolcetta ('10), Y. Achdou, F. Camilli, . Capuzzo-Dolcetta ('12),
Semi-implicit finite difference scheme computed through Newton iterations

E. Carlini, F. J. Silva ("14, '15) Semi-Lagrangian scheme computed using
fixed point-type iterations

H. Li, Y. Fan, and L. Ying ("21). Multiscale method for mean field games. Second order
accurate

» S. Cacace, F. Camilli, A. Goffi ('23), Q. Tang, M. Lauriére ('23), Policy iteration method.

> Recent interest in machine learning techniques to solve (MFG),, e.g: deep learning,

deep Galerkin method, reinforcement learning, etc..

Summaries on numerical methods and learning methods for MFG: Y. Achdou, M.
Lauriére ("'20) and M. Lauriére ('22).
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Assumptions

Assumptions: For a € (0, 1):
1. mg is non-negative, mg € P(T9) N C2*%(T9), and ut € C2+%(T9).
2. F,F’, F” are uniformly bounded mappings from R* — [R. Moreover, F’(-) > 0.
3. H:T9xRY > Ris continuous, twice differentiable in p, and there exist constants
¢, C > 0 such that
cl < Hpp(x,p) < Cl,for all (x, p) € T x RY.

Under the above assumptions, (MFG), admits one classical solution.
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Newton method

> Following (Camilli Tang 2023) we define the map

—dtu—vAu +H(x,Du) - F(m)
d¢m —vAm — div(mHp(x, Du))
u(T)—ut(x)

m(0) - mo(x)

F:(u,m)—

> Then
(MFG)>,&F(u,m)=0.

» The corresponding Newton'’s iterations can be written as

J}-(unfl,mnfl)((un,mn) _ (un—l' mnfl)) — _}-(unflymnfl).

> Applying the Newton'’s iterations, we get the system

—9:u" —vAU" +gq"Du" = g"Du" L~ H(Du" ) + F(m" Y + F/(m" Y (m"

drm" —vAm" —div(im"q") = div(m”’alp(Du”’l)(Du” —Du"1y)
m"(x,0)=mo(x), u"(x,T)=ur(x)

with g" = Hp(Du”’l).

_mnfl)

(MFG)NE
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Newton method

» The Newton methods reads:

Given (u9,m9), find (u", m") by solving (MFG)\g for n > 1.

If the initial guess (u®, mo) is close enough to the (u, m) solution of (MFG) , then

lu = ullcos +1Im™ = mllco < C(llu"~t = ull o1 +1Im™ ™ = mllco)?.

> Notation:
llullcor = llullco +1Dullco
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Our contribution

The question now is how to solve (MFG)yng

»> For that we consider two different approaches

1. An explicit semi-Lagrangian scheme
2. Animplicit upwind finite difference scheme

> A comparative analysis between the 2 aftermentioned schemes and other schemes
from the literature.

» The comparison is based on the relative errors, number of iterations, CPU time and
the robustness when v — 0.

» For simplicity, we consider d = 2 and the quadratic Hamiltonian:
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Main ingredients

» Given a grid function v, we introduce the first order central differences operators

Vitl, = Vi-1j .
(D1v); S Te— i,j=0,---,Nn—1,
Vi j+1 = Vij-1

i =0, ,Np—1,
>h I h

(Dav)i;
» The operator Dy as
(Dnv)ij =((D1v);j,(Dav)ij) i,j=0,--+,Np—1.
»> The five point discrete Laplace operator:
1 .
(Apv)ij= p(_“'vi,j +Vip1,jtVviclj+Vij+1 +Vij-1) =0, Ny -1

> Given a grid function with 2 components g = (g1, g2), we define the discrete
divergence operator

(divh(vq))i; = (Vi+1,j(CI1)i+1,j -vi—1,j(q1)i-1,

2h
+Vijr1(q2)ij+1 = vij-1(92)ij-1 )
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SL scheme for the backward equation

» Given
L™(t,x) =

we consider

—atu”—%ZAU”+q”Du”—L”(t,x):O in[0, T]x T2,
u(x, T) = G(x) inT2,

2
with % =.

» Feynman-Kac formula
T
u(t,x) = [E[-r LN (s, Xt"%(s))ds + G(Xt’X(T))],
t

where XX denotes characteristics solving

dX(s)=q"(s,X(s))+odW(s) forse(t,T)
X(t) = x.
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> Feynman-Kac formula in [tg, tx,1]

ter1
Un(ter):[E[j L5, XX (s))ds + u" (t41, XX (AL))
t

k

» Semi discretization in time by one-step weak Euler:
XWX (e 1)~ x + Atq" (t, x) + oAW,

where P(cAW = +V2At) = 3

» Rectangular rule for running cost

flen tye,x ~
L(s,X***)ds ~ AtL(tk, x)
tk

n,k

> Let us define {u i } as the solution to

nk

4
1
,J ZZ nk+1]((X,"j+Atqn(fk,X,"j)+ ZAeré)p)-}—Atl_n(fk,X,"j),
=1

(SL)

u™Ne = ur(x; ).
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Adjoint SL scheme for the forward equation

Given
G(t,x) = div(m™ 1 (t, x)(Du" (t, x) - Du" 1 (t, x)))

let us consider

dym" — ”—;Am” —div(m"g™) = G(t,x) in[0,T]xT2,
in T2,

m" (0, x) = mo(x)

Using the duality property
f L(f)gdx = J‘ L*(g)fdx
of the operators
02
L(u):= —?Au +q(x)TDu
02
L*(m):= —?Am —div(g(x)m)

we derive a scheme for the forward equation.
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Adjoint SL scheme

> We define {m,njk} as solution to

4
k 1 . — _
I‘: + Z m" k](yi[ij(Qn,k))+At(dlvh(mn 1,k+1(Dhun 1Lk+1 _ Dhun,kJrl)))i'j
=1
m,'njo = mo(x; ),
(Adjoint-SL)

> I*[f](yfj(Q”'k)) is the adjoint operator of f — I[f](yﬁj(Q”'k))
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Discrete Newton iterations system

2
» Denote by U and M vectors in R(Ne+1N;

» Combining (SL) and (Adjoint-SL), the semi-Lagrangian scheme to system (MFG)Ng
can be written in a matrix form:
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Discrete Newton iterations system

2
» Denote by U and M vectors in R(Ne+1N;

» Combining (SL) and (Adjoint-SL), the semi-Lagrangian scheme to system (MFG)Ng
can be written in a matrix form:

Given (U"~1,M"~1), define Q" := D, U"~1 and compute (U™, M") as solution of the
Hamiltonian system
A -W

-7 -A*

U

b
. (Newton-SL)

M C
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Discrete Newton iterations system

2
» Denote by U and M vectors in R(Ne+1N;

» Combining (SL) and (Adjoint-SL), the semi-Lagrangian scheme to system (MFG)Ng
can be written in a matrix form:

Given (U"~1,M"~1), define Q" := D, U"~1 and compute (U™, M") as solution of the
Hamiltonian system
A -W

-7 -A*

U

b
. (Newton-SL)

M C

Proposition: If M" > 0, then for any n € IN there exists a unique solution (U",M") to
(Newton-SL).
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Newton-finite differences scheme

» Givenq",m",m"~ 1 we define { } for k =0,. —1 as the solution to the

following Implicit FD scheme:

1,J ’J
n,NAr

ulk =kl +Atpy, ,Ahu +Atq (tk,X,J)Dhu +AtL(tk,x,])
Ui j = ut(Xi ).

where
P =ve s (|q (ti, xi )

» Computing the adjoint of the linearized backward equation to approximate the
forward equation

» The Newton iteration system (MFG)NE is approximated by
F -W b
-7 -TF

U
, (Newton-FD)
M
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Newton iteration algorithm for MFG

Algorithm Newton iterations for mean field games

0

1: Input: Initial guesses u*, mP, and tolerance t

2: Output: Solution to the Newton iterations system (MFG)NE
3: n«<0

4: repeat

5: Compute m"*1 and u™*1 by Newton-SL or Newton-FD
6: err(m) < [|m"*! - m"||o

7: err(u) < [lu™ - 4"

8: Update Q"

9: ne—n+1
10: untilerr(m)<tanderr(u)<t
11: return m"+1 yn+l
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Comparative analysis

» Through numerical tests, we conduct a comparative analysis between:

1.
2
3.
4

Remark:

Newton-SL

. Newton-FD

FD-Newton (Achdou, Capuzzo-Dolcetta and Camilli. 2010)

. SL-FP (Carlini and Silva 2014)

In FD-Newton, a numerical Hamiltonian should be defined in order to get
a discrete finite difference scheme for (MFG),, while in Newton-FD we
only use central difference to discretize the Hamiltonian, which gives a
simpler structure than FD-Newton.
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Test 1: One dimensional MFG with a reference solution

> We consider a MFG system in the time-space domain [0,0.05] x (0, 1) with periodic
boundary conditions at x=0and x=1,and v =0.1.

_ Ipl?

> The Hamiltonian H is given by : H(x, p) = 5~

» The initial condition is given by

4sin(27(x —1/4)) if x € [1/4,3/4]
mo(x) =
0 otherwise,

and
F(m)=-3mg(x)+4min(4,m), ut(x)=0, forxe(0,1).

» The Newton stopping threshold is T = 1074,

»> Reference solution to compare between the 4 schemes
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Newton-SL vs SL-FP

Newton-SL
h Eso(u) Eso(m) Time Iterations
2.50-1072 5.51-10~2 1.64-1071 0.61s 6
1.25-1072 2.40 1072 1.16-1071 2.77s 7
6.25-1073 1.83-1072 6.61-1072 13.92s 7
3.125.1073 4501073 1.41-1072 80.60s 7
SL-FP (Carlini and Silva’'l4

h Eoo(u) Eo(m) Time Iterations
2.50-1072 5.75-1072 1.62-1071 8.09s 10
1.25-1072 2.84.1072 1.11-1071 40.79s 10
6.25-1073 2.15.1072 5.84-1072 259.72s 12
3.125.1073 9.50-1073 6.51-1073 2793.71s 12

Table: Errors for the approximation of solution (u, m) using Newton-SL and SL-FP.
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Newton-FD vs FD-Newton

Newton-FD
h Eso(u) Eso(m) Time Iterations
2.50-1072 1.532.1071 3.42.1072 1.48s 7
1.25-1072 6.71-1072 1.83-.1072 12.27s 7
6.25-1073 3.37.1072 9.51-1073 68.10s 7
3.125.1073 1.91-1072 7.38.1073 436.01s 7
FD-Newton (Achdou et al.’13)
h Eoo(u) Eo(m) Time Iterations
2.50-1072 1.23-1071 3.11.10°2 2.23s 7
1.25-1072 6.21-1072 1.63-1072 18.32s 8
6.25-1073 3.14.1072 8.75-1073 92.91s 8
3.125.1073 1.77 1072 9.54.1073 597.21s 8

Table: Errors for the approximation of solution (u, m) using FD-Newton and Newton-FD.
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Test 2: One dimensional MFG

> We consider a MFG system in the time-space domain [0,0.01]x]0, 1| with periodic
boundary conditions.

» We vary the diffusion coefficient, taking values of v =0.4 and v = 0.02.

> We consider the following data

mo(x) = 1+ % cos(27x),
ut(x) = sin(4nx)+0.1cos(107x),
H(x,p) = |pl®=V(x), V(x)=200cos(27mx)- 10cos(4mx),
F(m) = mZ.

» The threshold 7 for the Newton stopping iteration criteria is set to 1074
» Comparison between Newton-SL, Newton-FD and FD-Newton

» The results are coherent with H. Li, Y. Fan, and L. Ying ("21).
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Test 2: v=0.4

\ ; | ‘f

(a) Initial distribution mg (b) Terminal cost ut (c) Potential V

(a) Newton-SL (b) Newton-FD (c) FD-Newton

The distribution approximated with the three Newton schemes
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Test 2: v=0.4

(a) Newton-SL

"- i‘A 5”
o1 » i o1

(b) Newton-FD

AAiA

0

Timo w0

(c) FD-Newton

The value function approximated with the three Newton schemes

ratons

(@) lmm*t = m|log

Heratons

(0 lu"1 - u"les
47/54



Test 2: v=0.02

» Breakdowns for Newton-FD and FD-Newton

» Newton-SL iterations error converge under the given threshold

Error
Error

3 3
Iterations terations.

(@) Im™* = m"loo (0) [u™ = "o

Newton-SL iterations error for v = 0.02
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(a) Evaluation of m (b) Evaluation of u

Approximated m and u using Newton-SL
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Test 3: 2 dimensional MFG

> We consider a MFG system in the time-space domain [0,1]x [0, 1]2 with periodic
boundary conditions.

> y=1

> H(x,y,p)=Ipl - V(x,y)

» t=10"4

» We consider the following data

V(x,y) = cos(4nx) + sin(2mx) + sin(2my), F(m)= m?,

1 1
mo(x,y)=1+ Ecos(an) + Ecos(Zny), uT(x,y) = cos(2my)+ cos(2my).

»> We solve the MFG system using Newton-SL
» The results are coherent with H. Li, Y. Fan, and L. Ying ("21).

50/54



2
e
12
os
oa
o2

01 02 03 04 05 0s 07 08 09 1

ose
oss
oss
ose

01 02 03 04 05 0s 07 08 09 1

(a)k=0 (b) k = N¢/2

1 as
108
s
100 08
I
08
3y 2
0se 04 i
02
ooz o
o 0z 04 ) ) 1

(c) k = 3N /4 (d) k = Ng

&

The approximated distribution m at times t =0, #, M, T.
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Conclusion

» FD-Newton and Newton-FD show similar behaviour in terms of CPU time and
accuracy

> In our tests, Newton-SL needs the cheapest CPU time and shows comparable
accuracy with respect to the other methods

» Newton-SL scheme works well in hyperbolic regime (v small)

52/54



References

& E. Carlini and F. J. Silva, A fully discrete semi-Lagrangian scheme for a first order
mean field game problem, SIAM Journal on Numerical Analysis, 52 (2014)

& E. Carlini, F. J. Silva, and A. Zorkot, A Lagrange—Galerkin scheme for first order mean
field game systems, SIAM Journal on Numerical Analysis, 62 (2024)

& Y. Achdou and |. Capuzzo-Dolcetta. Mean field games: Numerical methods. SIAM
Journal on Numerical Analysis, 48, 01 (2010).

& E.Carlini, F.J.Silva and A. Zorkot Newton methods for MFGs, in preparation (2024).

53/54



Thank you

54/54



	Lagrange-Galerkin method for the first order MFG system

