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Motivation: Many agent system

In today’s interconnected world, systems involving numerous agents are prevalent.

Visual examples:

Crowd motion Traffic flow

Flocking Distributed AI systems



Other examples:

Markets Financial market

Energy production Networks

Challenge: How to introduce an optimality notion to these systems
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The MFG system

The mean field game system is given by
−�t u − ßÉu + H (x ,Du) = F (x ,m(t)) in (0,T )×�d

�t m − ßÉm −div(mDp H (x ,Du)) = 0 in (0,T )×�d

m(0,x) = m0(x), u(T ,x) = G (x ,m(T )) in �
d ,

▶ The first equation is the Hamilton Jacobi Bellman equation for the agents’ value
function u .

▶ The second equation is the Fokker-Planck equation for the distribution of agents.
m(t) is the probability density of the state of players at time t

▶ m0 ∈ P (�d ) can be seen as the initial distribution of the agents.

▶ The MFG equilibrium is (u ,m) solution to the above system.
▶ Forward-Backward system.
▶ The linearized version of the HJB equation is the adjoint equation of the

Fokker-Plank equation.
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References

▶ MFGs were introduced in 2006 by J. M. Lasry and P. L. Lions. and by M. Huang, R. P.
Malhamé, and P. E. Caines.

▶ Useful references:
� J. M. Lasry and P. L. Lions. Jeux à champ moyen I. Le cas stationnaire. C. R. Math. Acad.

Sci. Paris,2006.
� J. M. Lasry and P. L. Lions. Jeux à champ moyen II. Horizon fini et controle optimal. C. R.

Math. Acad. Sci. Paris, 2006.
� J. M. Lasry and P. L. Lions. Mean field games. Jpn. J. Math. 2007.
� M. Huang, R. P. Malhamé, and P. E. Caines. Large population stochastic dynamic games:

closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle.
Commun. Inf. Syst. 2006.

� Y. Achdou, P. Cardaliaguet, F. Delarue, A. Porretta, and F. Santambrogio. Mean Field
Games: Cetraro, Italy 2019

▶ Impact of the theory:
 Numerical analysis of PDEs makes possible the approximation of equilibria of complex

systems.
 Construction of approximation of Nash equilibria (in feedback form) for N-persons games

through the solution of the MFG system.
 Applications: finance, market economics (oil producers, carbon markets...), engineering

(smart grids...), crowd dynamics, socio-politics (learning, opinion formation etc...)
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Our contribution

Goal of this talk: Discuss some numerical methods to solve MFG

✓ Lagrange-Galerkin method to solve the first order MFG PDE system (ß = 0).

✓ Newton iterations to solve the second order MFG PDE system (ß > 0).
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Lagrange-Galerkin method for the first order MFG system

Joint work with E. Carlini and F. J. Silva
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First order MFG system

When ß = 0 we have:
−�t u + H (x ,Du) = F (x ,m(t)) in (0,T )×�d ,

�t m −div(Dp H (x ,Du)m) = 0 in (0,T )×�d ,

m(0, ·) = m∗0, u(T ,x) = G (x ,m(T )) in �
d .

(MFG)1

▶ When the Hamiltonian H is coercive, the existence of solutions has been studied in
Lasry-Lions’07 and in Cardaliaguet-Hadikhanloo’17.

▶ If H is not coercive, the existence question has been studied in
Achdou-Mannucci-Marchi-Tchou’20 and in Cannarsa-Mendico’20.

▶ Unlike the second order case, solutions to (MFG)1 are not regular in general, which
makes the analysis more complicated.
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Numerical methods

▶ Coercive Case:
• In Camilli-Silva’12, for H (x ,p) = |p |2/2, a semi-discrete SL scheme is proposed and

convergence is shown.

• A fully-discrete semi-Lagrangian proposed in Carlini-Silva’14, for H (x ,p) = |p |2/2, is shown
to converge when d = 1.

• Extensions to the case of fractional and non-local operators in
Chowdhury-Ersland-Jakobsen’22.

• Application to price formation MFG model by Ashrafyan-Gomes’24.

• An approximating MFG with discrete time and finite state space is proposed in
Hadikhanloo-Silva’19. Convergence is obtained in general dimensions.

• Fourier methods, Nuberkyan, Saude (’19) and Liu, Jacobs, Li, Nuberkyan,Osher (’20)
▶ Non-coercive case:

• See Gianatti-Silva’22 and Gianatti-Silva-Z’2023 where a relaxed definition of the
equilibrium is used and an approximation based on discrete time finite state MFG is
introduced.
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Lagrange-Galerkin method for the first order MFG system

▶ Main idea: Apply a semi-Lagrangian scheme to the HJB equation then couple it
with a Lagrange-Galerkin scheme for the continuity equation.

▶ Assumptions:
• The Hamiltonian H is given by

H (x ,p) = sup
a∈�d

{−⟨a ,p⟩ − L (x ,a)} for all x ,p ∈�d ,

where L is of class C 2, and for all x ,a ∈�d , we have

L (x ,a) ≤ C (|a |2 + 1),

|Dx L (x ,a)| ≤ C (|a |2 + 1),

C |b |2 ≤ D 2
aa L (x ,a)(b ,b ),

D 2
xx L (x ,a)(y ,y) ≤ C (|a |2 + 1)|y |2.

These assumptions on L imply that H has quadratic growth and

|Dp H (x ,p)| ≤ C (1 + |p |) for all x ,p ∈�d .

A typical example is H (x ,p) = a(x)|p |2 + ⟨b (x),p⟩, with a and b of class C 2
b and a bounded

from below by a strictly positive constant.
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• F and G are bounded, continuous, and for every Þ ∈ P1(�d ),

(Lip) |F (x ,Þ)− F (y ,Þ)|+ |G (x ,Þ)−G (y ,Þ)| ≤ C |x − y |,

(SC) F (x + y ,Þ)−2F (x ,Þ) + F (x − y ,Þ) ≤ C |y |2,

(SC) G (x + y ,Þ)−2G (x ,Þ) + G (x − y ,Þ) ≤ C |y |2.

Notice that no differentiability is assumed for F and G .

• m∗0 has compact support and m∗0 ∈ L p (�d ) for some p ∈ (1,∞].
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Approximation to the HJB equation

Let Þ ∈ C ([0,T ];P1(�d )) and consider the HJB equation

−�t u + H (x ,Du) = F (x ,Þ(t)) in [0,T ]×�d ,

u(T ,x) = G (x ,Þ(T )) in �
d .

If u[Þ] denotes its solution, then for every (t ,x) ∈ [0,T ]×�d ,

u[Þ](t ,x) =inf
Ó

∫ T

t
L (Õ(s),Ó(s)) + F (Õ(s),Þ(s))︸                            ︷︷                            ︸

Running cost

ds + G (Õ(T ),Þ(T ))︸          ︷︷          ︸
Final cost

Õ satisfies Õ̇(s) = −Ó(s) in ]s ,T [, Õ(t) = x .

Proposition:

The value function is uniformly bounded, and the following hold:

(Lip) |u[Þ](t ,x)−u[Þ](t ,y)| ≤ C |x − y |,

(SC) u[Þ](x + y ,Þ)−2u[Þ](x ,Þ) + u[Þ](x − y ,Þ) ≤ C |y |2.
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Semi-Lagrangian scheme for HJB equation

▶ u[Þ] satisfies the Dynamic Programming Principle:

u[Þ](t ,x) = inf
Ó∈L 2(�d )

{∫ t+h

t
[L (Õ(s),Ó(s)) + F (Õ(s),Þ(s)]ds + u[Þ](t + h ,Õ(t + h ))

}
for all h ∈ [0,T − t].
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Semi-Lagrangian scheme for HJB equation

▶ Set Ét > 0 as the time step and let tk = kÉt , k = 0, · · ·NT .
▶ Semi-discrete DPP: let uk [Þ](x) ≈ u[Þ](tk ,x) be such that

uk [Þ](x) = inf
a∈�d

Ét[L (x ,a) + F (x ,Þ(tk )] + uk+1[Þ](x −aÉt)

▶ Discretization in space: let Éx > 0 be the space step and let GÉx = {xi = iÉx | i ∈�d }
be the grid space.

x

Initial State
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As in Carlini-S’14, given (Ét ,Éx) we consider the following semi-Lagrangian scheme for
the HJB equation:

uk ,i = inf
a∈�d

{
ÉtL (xi ,a) + I 1[uk+1,·](xi −Éta)

}
+ÉtF (xi ,Þ(tk )),

uN ,i = G (xi ,Þ(T )),

where, given æ defined on GÉx = {xi = Éx | i ∈�d }

I1[æ](x) =
¼

i∈�d

Ô1
i (x)æ(xi ), for all x ∈�d ,

where {Ô1
i | i ∈�

d } is the �1-basis defined on the regular mesh GÉx .

This scheme is shown to be consistent, stable, and preserves:
▶ (Lip) The Lipschitz property.
▶ (SC) The semiconcavity.
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Given ê > 0 and a standard mollifier âê, we set É = (Ét ,Éx , ê) and

uÉ[Þ](t ,x) = (âê ∗ I [uk ](x)) for all t ∈ [tk , tk+1),x ∈�d .

▶ uÉ[Þ] preserves the Lipschitz property.
▶ The following semi-concavity estimate holds:

⟨D 2
xx uÉ[Þ](t ,x)y ,y⟩ ≤ C

1 +

(
Éx

ê2

)2 |y |2.
▶ Theorem: Under suitable assumptions on the parameters, if Þn → Þ and Én → 0,

then uÉn [Þn ] → u[Þ] uniformly over compact sets, and Dx uÉn [Þn ] →
Dx u[Þ] a.e.
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Approximation to the continuity equation

Let us consider the following continuity equation

�t m −div(Dp H (x ,Dx u[Þ])m) = 0 in (0,T )×�d ,

m(0) = m∗0.

Using the properties of u[Þ], one can show the existence of m[Þ] solution to the
continuity equation such that:

▶ m[Þ](t , ·) has a compact support, independent of Þ.

▶ Mass conservation hold

∥m[Þ](t , ·)∥L p ≤ C∥m∗0∥L p , for all t ∈ (0,T ).

where C is independent of p .
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To discretize the MFG system, we focus on

�t m −div(Dp H (x ,Dx uÉ[Þ])m) = 0 in (0,T )×�d ,

m(0) = m∗0.

Since uÉ is smooth w.r.t state, this equation has a unique solution

mÉ[Þ](t , ·) = ÐÉ[Þ](0, t , ·)♯m∗0,

where ÐÉ[Þ](s , t ,x) is the solution, at time t , of the ODE:

Õ̇(r) = −Dp H (Õ(r),Dx uÉ[Þ](r ,Õ(r))) in (s ,T ),

Õ(s) = x .

Equivalently, for æ integrable with respect to mÉ[Þ](s),∫
�

d
æ(x)dmÉ[Þ](t)(x) =

∫
�

d
æ(ÐÉ[Þ](s , t ,x))dmÉ[Þ](s)(x) (CE)

▶ We approximate ÐÉ[Þ](tk , tk+1,x) by explicite one-step Euler scheme

ÐÉ
k [Þ](x) = x −ÉtDp H (x ,Dx uÉ[Þ](tk ,x)).
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▶ Let {Ôi }i∈�d be a FE basis and approximate mÉ[Þ](tk ) by

M
É[Þ](tk ,x) =

¼
i∈�d

mk ,iÔi (x).

▶ Using this approximation and taking æ = Ôj in (CE), we get¼
i∈�d

mk+1,i

∫
�

d
Ôi (x)Ôj (ÐÉ

k [Þ](x))dx =
¼

i∈�d

mk ,i

∫
�

d
Ôj (ÐÉ

k [Þ](x))Ôi (x)dx .

▶ Let us choose Ôi = Ô0
i = �Ei , where

Ei = [xi −Éx/2,xi +Éx/2]d .

This choice yields the following Lagrange-Galerkin scheme:

mk+1,i =
1

(Éx)d

¼
j

mk ,j

∫
Ej

Ô0
i (ÐÉ

k [Þ](x))dx (LG)

m0,i =
1

(Éx)d

∫
Ei

m∗0(x)dx .
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▶ Let us choose Ôi = Ô0
i = �Ei , where

Ei = [xi −Éx/2,xi +Éx/2]d .

This choice yields the following Lagrange-Galerkin scheme:

mk+1,i =
1

(Éx)d

¼
j

mk ,j

∫
Ej

Ô0
i (ÐÉ

k [Þ](x))dx (LG)

m0,i =
1

(Éx)d

∫
Ei

m∗0(x)dx .
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Interpretation of the scheme

▶ We observe that∫
Ej

Ô0
i (ÐÉ

k [Þ](x))dx =
∫
�

d
�Ej∩ÐÉ

k [Þ]−1(Ei )
(x)dx = Ld

(
Ej ∩ÐÉ

k [Þ]−1(Ei )

)
,

⇒ equivalent to the scheme introduced in Picolli-Tosin’11.

Description of the scheme in the 2 dimensional case
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▶ Given (mk ,i ) solution to (LG), for t ∈ [tk , tk+1), let us define

M
É[Þ](t ,x) =

( tk+1 − t
Ét

) ¼
i∈�d

mk ,iÔi (x) +
( t − tk

Ét

) ¼
i∈�d

mk+1,iÔi (x).

▶ MÉ[Þ] ∈ C ([0,T ];P1(�d )).

▶ There exists C ∗ > 0 such that supp(MÉ[Þ](t , ·)) ⊆ B (0,C ∗).

▶ The map [0,T ] ∋ t 7→MÉ[Þ](t , ·) ∈ P1(�d ) is Lipschitz continuous.

▶ If Éx = O (Ét) and Ét = O (ê2), then

∥MÉ[Þ](t , ·)∥L p ≤ C∥m∗0∥L p .

The proof of the L p -stability mainly relies on the following facts:
▶ Ét /ê small enough⇒ ÐÉ

k [Þ] is one-to-one.

▶ The estimate on D 2
xx uÉ[Þ](tk , ·) implies that

det(DxÐ
É
k [Þ](x))−1 ≤ 1 + CÉt .
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Approximation of the MFG problem

Let uÉ[Þ] be the solution to the SL scheme and MÉ the solution to the LG scheme, then:

▶ (MFG)1 is discretized as follows:

Find Þ such that Þ = M
É[Þ] (MFG)É.

Using the Brouwer’s fixed point theorem, we show that (MFG)É admits at least one
solution.

▶ Convergence holds in general state dimensions.

Theorem (Carlini-Silva-Z’23)

Let Én = (Étn ,Éxn , ên ) ∈]0,∞[3, let mn be a solution to (MFG)Én , and un = uÉ[mn ].
Assume that, as Én → 0, Éxn = o(Étn ) and Étn = O (ê2

n ). Then, up to some subsequence,
(un ,mn ) converges to a solution (u∗,m∗) of (MFG)1.
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Numerical results

▶ In order to implement the scheme, we follow Morton-Priestley-Süli’88 by considering
the following approximation called area weighting

ÐÉ
k [Þ](x) ≈ x −ÉtDp H (xi ,Dx vÉ[Þ](tk ,xi )) if x ∈ Ei ,

to obtain ∫
Ej

Ô0
i (ÐÉ

k [Þ](x))dx = Ô1
i (ÐÉ

k [Þ](xj )).

▶ We use Picard iterations to solve (MFG)É

▶ In the numerical test below, we set d = 2, and we consider the MFG problem defined

on [0,1]× [0,2]2, and set Ét = (Éx)
2
3

m∗0(x) =
ß(x)∫

[0,2]2 ß(x)dx
�[0,2]2 with ß(x) = e−|x−x0 |2/0.01 and x0 = (0.75,0.75).
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We also consider

H (x ,p) =
|p |2

2
, G = 0

and
F (x ,m) = Õmin(R , |x − xf |2)︸                ︷︷                ︸

penalize the deviation from xf

+ (âã ∗m)(x)︸       ︷︷       ︸
encourage avoiding the crowd

with xf = (1.75,1.75).
In the figures below, we display the distributions for Õ = 0.5 and Õ = 3.

Õ = 0.5 Õ = 3
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Newton iterations for second order MFG system

Ongoing work with E. Carlini and F. J. Silva
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Newton iterations for second order MFG system

▶ We consider the second order MFG system
−�t u − ßÉu + H (x ,Du) = F (m(t ,x)) in �

d × [0,T ]

�t m − ßÉm −div(mHp (x ,Du)) = 0 in �
d × [0,T ]

m(x ,0) = m0(x), u(x ,T ) = uT (x) in �
d ,

(MFG)2

where
• ß > 0
• �

d stands for the flat torus �
d /�d

• H is a convex Hamiltonian
• F is local coupling

▶ Our aim is:

to propose a new numerical scheme by discretizing a Newton method in
infinite dimension
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Numerical methods

▶ Y. Achdou, I. Capuzzo-Dolcetta (’10), Y. Achdou, F. Camilli, I. Capuzzo-Dolcetta (’12),
Semi-implicit finite difference scheme computed through Newton iterations

▶ E. Carlini, F. J. Silva (’14, ’15) Semi-Lagrangian scheme computed using
fixed point-type iterations

▶ H. Li, Y. Fan, and L. Ying (’21). Multiscale method for mean field games. Second order
accurate

▶ S. Cacace, F. Camilli, A. Goffi (’23), Q. Tang, M. Lauriére (’23), Policy iteration method.
▶ Recent interest in machine learning techniques to solve (MFG)2, e.g: deep learning,

deep Galerkin method, reinforcement learning, etc..
▶ Summaries on numerical methods and learning methods for MFG: Y. Achdou, M.

Laurière (’20) and M. Lauriére (’22).
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Assumptions

Assumptions: For Ó ∈ (0,1):

1. m0 is non-negative, m0 ∈ P (�d )∩C 2+Ó(�d ), and uT ∈ C 2+Ó(�d ).

2. F , F ′ , F ′′ are uniformly bounded mappings from �
+→�. Moreover, F ′(·) ≥ 0.

3. H : �d ×�d →� is continuous, twice differentiable in p , and there exist constants
c ,C > 0 such that

cI ≤ Hpp (x ,p) ≤ CI , for all (x ,p) ∈ �d ×�d .

Under the above assumptions, (MFG)2 admits one classical solution.
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Newton method

▶ Following (Camilli Tang 2023) we define the map

F : (u ,m)→


−�t u − ßÉu + H (x ,Du)− F (m)
�t m − ßÉm −div(mHp (x ,Du))
u(T )−uT (x)
m(0)−m0(x)

 .
▶ Then

(MFG)2⇔F (u ,m) = 0.

▶ The corresponding Newton’s iterations can be written as

JF (un−1,mn−1)((un ,mn )− (un−1,mn−1)) = −F (un−1,mn−1).

▶ Applying the Newton’s iterations, we get the system
−�t un − ßÉun + qn Dun = qn Dun−1 −H (Dun−1) + F (mn−1) + F ′(mn−1)(mn −mn−1)

�t mn − ßÉmn −div(mn qn ) = div(mn−1Hpp (Dun−1)(Dun −Dun−1))

mn (x ,0) = m0(x), un (x ,T ) = uT (x)
(MFG)NE

with qn = Hp (Dun−1).
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Newton method

▶ The Newton methods reads:

Given (u0,m0), find (un ,mn ) by solving (MFG)NE for n ≥ 1.

Theorem (Camilli Tang 2023)

If the initial guess (u0,m0) is close enough to the (u ,m) solution of (MFG)2 , then

∥un −u∥C 0,1 + ∥mn −m∥C 0 ≤ C (∥un−1 −u∥C 0,1 + ∥mn−1 −m∥C 0 )2.

▶ Notation:
∥u∥C 0,1 = ∥u∥C 0 + ∥Du∥C 0
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Our contribution

The question now is how to solve (MFG)NE

▶ For that we consider two different approaches
1. An explicit semi-Lagrangian scheme
2. An implicit upwind finite difference scheme

▶ A comparative analysis between the 2 aftermentioned schemes and other schemes
from the literature.

▶ The comparison is based on the relative errors, number of iterations, CPU time and
the robustness when ß→ 0.

▶ For simplicity, we consider d = 2 and the quadratic Hamiltonian:

H (x ,p) =
|p |2

2
−V (x)
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Main ingredients

▶ Given a grid function v , we introduce the first order central differences operators

(D1v)i ,j =
vi+1,j − vi−1,j

2h
i , j = 0, · · · ,Nh −1,

(D2v)i ,j =
vi ,j+1 − vi ,j−1

2h
i , j = 0, · · · ,Nh −1,

▶ The operator Dh as

(Dh v)i ,j = ((D1v)i ,j , (D2v)i ,j ) i , j = 0, · · · ,Nh −1.

▶ The five point discrete Laplace operator:

(Éh v)i ,j =
1

h2
(−4vi ,j + vi+1,j + vi−1,j + vi ,j+1 + vi ,j−1) i , j = 0, · · · ,Nh −1.

▶ Given a grid function with 2 components q = (q1,q2), we define the discrete
divergence operator

(divh (vq))i ,j =
1

2h

(
vi+1,j (q1)i+1,j − vi−1,j (q1)i−1,j

+ vi ,j+1(q2)i ,j+1 − vi ,j−1(q2)i ,j−1

)
.
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SL scheme for the backward equation

▶ Given

L n (t ,x) =
|qn (t ,x)|2

2
+ F (mn−1(t ,x)) + F ′(mn−1(t ,x))(mn (t ,x)−mn−1(t ,x))−V (x).

we consider −�t un − ã2

2 Éun + qn Dun − L n (t ,x) = 0 in [0,T ]×�2,

un (x ,T ) = G (x) in �
2,

with ã2

2 = ß.
▶ Feynman-Kac formula

un (t ,x) = �

[∫ T

t
L n (s ,X t ,x (s))ds + G (X t ,x (T ))

]
,

where X t ,x denotes characteristics solvingdX (s) = qn (s ,X (s)) + ãdW (s) for s ∈ (t ,T )

X (t) = x .
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▶ Feynman-Kac formula in [tk , tk+1]

un (tk ,x) = �

[∫ tk+1

tk

L n (s ,X tk ,x (s))ds + un (tk+1,X
tk ,x (Ét))

]
▶ Semi discretization in time by one-step weak Euler:

X tk ,x (tk+1) ≈ x +Étqn (tk ,x) + ãÉW ,

where P (ãÉW = ±
√

2Ét) = 1
4

▶ Rectangular rule for running cost∫ tk+1

tk

L (s ,X tk ,x )ds ≈ ÉtL (tk ,x)

▶ Let us define {un ,k
i ,j } as the solution to

un ,k
i ,j =

1
4

4¼
�=1

I [un ,k+1]((xi ,j +Étqn (tk ,xi ,j ) +
√

2Étãe�)p ) +ÉtL n (tk ,xi ,j ),

un ,Nt = uT (xi ,j ).

(SL)
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Adjoint SL scheme for the forward equation

Given
G (t ,x) = div(mn−1(t ,x)(Dun (t ,x)−Dun−1(t ,x)))

let us consider �t mn − ã2

2 Émn −div(mn qn ) = G (t ,x) in [0,T ]×�2,

mn (0,x) = m0(x) in �
2.

Using the duality property ∫
L (f )gdx =

∫
L ∗(g)fdx

of the operators

L (u) := −ã
2

2
Éu + q(x)⊤Du

L ∗(m) := −ã
2

2
Ém −div(q(x)m)

we derive a scheme for the forward equation.
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Adjoint SL scheme

▶ We define {mn ,k
i ,j } as solution to


mn ,k+1

i ,j =
1
4

4¼
�=1

I ∗[mn ,k ](y�i ,j (Q n ,k )) +Ét(divh (mn−1,k+1(Dh un−1,k+1 −Dh un ,k+1)))i ,j

mn ,0
i ,j = m0(xi ,j ),

(Adjoint-SL)

▶ I ∗[f ](y�i ,j (Q n ,k )) is the adjoint operator of f → I [f ](y�i ,j (Q n ,k ))
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Discrete Newton iterations system

▶ Denote by U and M vectors in �
(Nt +1)N 2

h

▶ Combining (SL) and (Adjoint-SL), the semi-Lagrangian scheme to system (MFG)NE
can be written in a matrix form:

Given (U n−1,M n−1), define Q n := Dh U n−1 and compute (U n ,M n ) as solution of the
Hamiltonian system A −W

−Z −A∗

U

M

 =

b
c

 . (Newton-SL)

Proposition: If M n > 0, then for any n ∈� there exists a unique solution (U n ,M n ) to
(Newton-SL).
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Newton-finite differences scheme

▶ Given qn ,mn ,mn−1, we define {un ,k
i ,j } for k = 0, . . . ,NÉt −1 as the solution to the

following Implicit FD scheme:un ,k
i ,j = un ,k+1

i ,j +ÉtÞk ,iÉh un ,k
i ,j +Étqn (tk ,xi ,j )Dh un ,k

i ,j +ÉtL (tk ,xi ,j )

un ,NÉt
i ,j = uT (xi ,j ).

where
Þk

i ,j = ß+
h
2

( |qn (tk ,xi ,j )| )

▶ Computing the adjoint of the linearized backward equation to approximate the
forward equation

▶ The Newton iteration system (MFG)NE is approximated by F −W̃

−Z̃ −F∗


U

M

 =

b̃
c̃

 , (Newton-FD)
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Newton iteration algorithm for MFG

Algorithm Newton iterations for mean field games

1: Input: Initial guesses u0, m0, and tolerance ä
2: Output: Solution to the Newton iterations system (MFG)NE
3: n← 0
4: repeat

5: Compute mn+1 and un+1 by Newton-SL or Newton-FD
6: err(m)← ∥mn+1 −mn∥∞
7: err(u)← ∥un+1 −un∥∞
8: Update Q n

9: n← n + 1
10: until err(m) < ä and err(u) < ä
11: return mn+1,un+1
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Comparative analysis

▶ Through numerical tests, we conduct a comparative analysis between:
1. Newton-SL

2. Newton-FD

3. FD-Newton (Achdou, Capuzzo-Dolcetta and Camilli. 2010)

4. SL-FP (Carlini and Silva 2014)

Remark: In FD-Newton, a numerical Hamiltonian should be defined in order to get
a discrete finite difference scheme for (MFG)2, while in Newton-FD we
only use central difference to discretize the Hamiltonian, which gives a
simpler structure than FD-Newton.
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Test 1: One dimensional MFG with a reference solution

▶ We consider a MFG system in the time-space domain [0,0.05]× (0,1) with periodic
boundary conditions at x = 0 and x = 1, and ß = 0.1.

▶ The Hamiltonian H is given by : H (x ,p) = |p |
2

2
▶ The initial condition is given by

m0(x) =


4sin2(2á(x −1/4)) if x ∈ [1/4,3/4]

0 otherwise,

and
F (m) = −3m0(x) + 4min(4,m), uT (x) = 0, for x ∈ (0,1).

▶ The Newton stopping threshold is ä = 10−4.
▶ Reference solution to compare between the 4 schemes
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Newton-SL vs SL-FP

Newton-SL

h E∞(u) E∞(m) Time Iterations

2.50 ·10−2 5.51 ·10−2 1.64 ·10−1 0.61s 6

1.25 ·10−2 2.40 ·10−2 1.16 ·10−1 2.77s 7

6.25 ·10−3 1.83 ·10−2 6.61 ·10−2 13.92s 7

3.125 ·10−3 4.50 ·10−3 1.41 ·10−2 80.60s 7

SL-FP (Carlini and Silva’14)

h E∞(u) E∞(m) Time Iterations

2.50 ·10−2 5.75 ·10−2 1.62 ·10−1 8.09s 10

1.25 ·10−2 2.84 ·10−2 1.11 ·10−1 40.79s 10

6.25 ·10−3 2.15 ·10−2 5.84 ·10−2 259.72s 12

3.125 ·10−3 9.50 ·10−3 6.51 ·10−3 2793.71s 12

Table: Errors for the approximation of solution (u ,m) using Newton-SL and SL-FP.
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Newton-FD vs FD-Newton

Newton-FD

h E∞(u) E∞(m) Time Iterations

2.50 ·10−2 1.532 ·10−1 3.42 ·10−2 1.48s 7

1.25 ·10−2 6.71 ·10−2 1.83 ·10−2 12.27s 7

6.25 ·10−3 3.37 ·10−2 9.51 ·10−3 68.10s 7

3.125 ·10−3 1.91 ·10−2 7.38 ·10−3 436.01s 7

FD-Newton (Achdou et al.’13)

h E∞(u) E∞(m) Time Iterations

2.50 ·10−2 1.23 ·10−1 3.11 ·10−2 2.23s 7

1.25 ·10−2 6.21 ·10−2 1.63 ·10−2 18.32s 8

6.25 ·10−3 3.14 ·10−2 8.75 ·10−3 92.91s 8

3.125 ·10−3 1.77 ·10−2 9.54 ·10−3 597.21s 8

Table: Errors for the approximation of solution (u ,m) using FD-Newton and Newton-FD.
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Test 2: One dimensional MFG

▶ We consider a MFG system in the time-space domain [0,0.01]×]0,1[ with periodic
boundary conditions.

▶ We vary the diffusion coefficient, taking values of ß = 0.4 and ß = 0.02.
▶ We consider the following data

m0(x) = 1 + 1
2 cos(2áx),

uT (x) = sin(4áx) + 0.1cos(10áx),
H (x ,p) = |p |2 −V (x), V (x) = 200cos(2áx)−10cos(4áx),

F (m) = m2.

▶ The threshold ä for the Newton stopping iteration criteria is set to 10−4

▶ Comparison between Newton-SL, Newton-FD and FD-Newton
▶ The results are coherent with H. Li, Y. Fan, and L. Ying (’21).
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Test 2: ß = 0.4

(a) Initial distribution m0 (b) Terminal cost uT (c) Potential V

(a) Newton-SL (b) Newton-FD (c) FD-Newton

The distribution approximated with the three Newton schemes
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Test 2: ß = 0.4

(a) Newton-SL (b) Newton-FD (c) FD-Newton

The value function approximated with the three Newton schemes

(a) ∥mn+1 −mn ∥∞ (b) ∥un+1 −un ∥∞

Newton errors for the three schemes

47 / 54



Test 2: ß = 0.02

▶ Breakdowns for Newton-FD and FD-Newton
▶ Newton-SL iterations error converge under the given threshold

(a) ∥mn+1 −mn ∥∞ (b) ∥un+1 −un ∥∞

Newton-SL iterations error for ß = 0.02
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(a) Evaluation of m (b) Evaluation of u

Approximated m and u using Newton-SL
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Test 3: 2 dimensional MFG

▶ We consider a MFG system in the time-space domain [0,1]× [0,1]2 with periodic
boundary conditions.

▶ ß = 1
▶ H (x ,y ,p) = |p |2 −V (x ,y)
▶ ä = 10−4

▶ We consider the following data

V (x ,y) = cos(4áx) + sin(2áx) + sin(2áy), F (m) = m2,

m0(x ,y) = 1 +
1
2

cos(2áx) +
1
2

cos(2áy), uT (x ,y) = cos(2áy) + cos(2áy).

▶ We solve the MFG system using Newton-SL
▶ The results are coherent with H. Li, Y. Fan, and L. Ying (’21).
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(a) k = 0 (b) k = Nt /2

(c) k = 3Nt /4 (d) k = Nt

The approximated distribution m at times t = 0, Nt dt
2 , 3Nt dt

4 ,T .
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Conclusion

▶ FD-Newton and Newton-FD show similar behaviour in terms of CPU time and
accuracy

▶ In our tests, Newton-SL needs the cheapest CPU time and shows comparable
accuracy with respect to the other methods

▶ Newton-SL scheme works well in hyperbolic regime (ß small)
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