Approximation to Mean Field Games

Ahmad Zorkot Université de Limoges

Motivation: Many agent system

In today's interconnected world, systems involving numerous agents are prevalent.

Visual examples:

Crowd motion

Flocking

Traffic flow

Distributed Al systems

Other examples:

Markets

Energy production

Financial market

Networks

Other examples:

Markets

Financial market

Energy production

Networks

Challenge: How to introduce an optimality notion to these systems

The mean field game system is given by

- The first equation is the Hamilton Jacobi Bellman equation for the agents' value function u.
- The second equation is the Fokker-Planck equation for the distribution of agents. m(t) is the probability density of the state of players at time t
- ▶ $m_0 \in \mathcal{P}(\mathbb{R}^d)$ can be seen as the initial distribution of the agents.

The mean field game system is given by

- The first equation is the Hamilton Jacobi Bellman equation for the agents' value function u.
- The second equation is the Fokker-Planck equation for the distribution of agents. m(t) is the probability density of the state of players at time t
- ▶ $m_0 \in \mathcal{P}(\mathbb{R}^d)$ can be seen as the initial distribution of the agents.
- The **MFG** equilibrium is (u, m) solution to the above system.
- Forward-Backward system.
- The linearized version of the HJB equation is the adjoint equation of the Fokker-Plank equation.

- MFGs were introduced in 2006 by J. M. Lasry and P. L. Lions. and by M. Huang, R. P. Malhamé, and P. E. Caines.
- Useful references:
 - J. M. Lasry and P. L. Lions. Jeux à champ moyen I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris,2006.
 - J. M. Lasry and P. L. Lions. Jeux à champ moyen II. Horizon fini et controle optimal. C. R. Math. Acad. Sci. Paris, 2006.
 - J. M. Lasry and P. L. Lions. Mean field games. Jpn. J. Math. 2007.
 - M. Huang, R. P. Malhamé, and P. E. Caines. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 2006.
 - Y. Achdou, P. Cardaliaguet, F. Delarue, A. Porretta, and F. Santambrogio. Mean Field Games: Cetraro, Italy 2019

- MFGs were introduced in 2006 by J. M. Lasry and P. L. Lions. and by M. Huang, R. P. Malhamé, and P. E. Caines.
- Useful references:
 - J. M. Lasry and P. L. Lions. Jeux à champ moyen I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris,2006.
 - J. M. Lasry and P. L. Lions. Jeux à champ moyen II. Horizon fini et controle optimal. C. R. Math. Acad. Sci. Paris, 2006.
 - J. M. Lasry and P. L. Lions. Mean field games. Jpn. J. Math. 2007.
 - M. Huang, R. P. Malhamé, and P. E. Caines. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 2006.
 - Y. Achdou, P. Cardaliaguet, F. Delarue, A. Porretta, and F. Santambrogio. Mean Field Games: Cetraro, Italy 2019
- Impact of the theory:
 - V Numerical analysis of PDEs makes possible the approximation of equilibria of complex systems.

- MFGs were introduced in 2006 by J. M. Lasry and P. L. Lions. and by M. Huang, R. P. Malhamé, and P. E. Caines.
- Useful references:
 - J. M. Lasry and P. L. Lions. Jeux à champ moyen I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris,2006.
 - J. M. Lasry and P. L. Lions. Jeux à champ moyen II. Horizon fini et controle optimal. C. R. Math. Acad. Sci. Paris, 2006.
 - J. M. Lasry and P. L. Lions. Mean field games. Jpn. J. Math. 2007.
 - M. Huang, R. P. Malhamé, and P. E. Caines. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 2006.
 - Y. Achdou, P. Cardaliaguet, F. Delarue, A. Porretta, and F. Santambrogio. Mean Field Games: Cetraro, Italy 2019
- Impact of the theory:
 - V Numerical analysis of PDEs makes possible the approximation of equilibria of complex systems.
 - Construction of approximation of Nash equilibria (in feedback form) for N-persons games through the solution of the MFG system.

- MFGs were introduced in 2006 by J. M. Lasry and P. L. Lions. and by M. Huang, R. P. Malhamé, and P. E. Caines.
- Useful references:
 - J. M. Lasry and P. L. Lions. Jeux à champ moyen I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris,2006.
 - J. M. Lasry and P. L. Lions. Jeux à champ moyen II. Horizon fini et controle optimal. C. R. Math. Acad. Sci. Paris, 2006.
 - J. M. Lasry and P. L. Lions. Mean field games. Jpn. J. Math. 2007.
 - M. Huang, R. P. Malhamé, and P. E. Caines. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 2006.
 - Y. Achdou, P. Cardaliaguet, F. Delarue, A. Porretta, and F. Santambrogio. Mean Field Games: Cetraro, Italy 2019
- Impact of the theory:
 - Solution Numerical analysis of PDEs makes possible the approximation of equilibria of complex systems.
 - Construction of approximation of Nash equilibria (in feedback form) for N-persons games through the solution of the MFG system.
 - Applications: finance, market economics (oil producers, carbon markets...), engineering (smart grids...), crowd dynamics, socio-politics (learning, opinion formation etc...)

Goal of this talk: Discuss some numerical methods to solve MFG

Goal of this talk: Discuss some numerical methods to solve MFG

- \checkmark Lagrange-Galerkin method to solve the first order MFG PDE system ($\nu = 0$).
- \checkmark Newton iterations to solve the second order MFG PDE system ($\nu > 0$).

Lagrange-Galerkin method for the first order MFG system

Joint work with E. Carlini and F. J. Silva

When $\nu = 0$ we have:

$$\begin{cases} -\partial_t u + H(x, Du) = F(x, m(t)) & \text{in } (0, T) \times \mathbb{R}^d, \\ \partial_t m - \operatorname{div}(D_p H(x, Du)m) = 0 & \text{in } (0, T) \times \mathbb{R}^d, \\ m(0, \cdot) = m_0^*, \quad u(T, x) = G(x, m(T)) & \text{in } \mathbb{R}^d. \end{cases}$$
(MFG)₁

When $\nu = 0$ we have:

$$\begin{cases} -\partial_t u + H(x, Du) = F(x, m(t)) & \text{in } (0, T) \times \mathbb{R}^d, \\ \partial_t m - \operatorname{div}(D_p H(x, Du)m) = 0 & \text{in } (0, T) \times \mathbb{R}^d, \\ m(0, \cdot) = m_0^*, \quad u(T, x) = G(x, m(T)) & \text{in } \mathbb{R}^d. \end{cases}$$
(MFG)₁

- When the Hamiltonian H is coercive, the existence of solutions has been studied in Lasry-Lions'07 and in Cardaliaguet-Hadikhanloo'17.
- If H is not coercive, the existence question has been studied in Achdou-Mannucci-Marchi-Tchou'20 and in Cannarsa-Mendico'20.
- Unlike the second order case, solutions to (MFG)₁ are not regular in general, which makes the analysis more complicated.

- Coercive Case:
 - In Camilli-Silva'12, for $H(x, p) = |p|^2/2$, a semi-discrete SL scheme is proposed and convergence is shown.
 - A fully-discrete semi-Lagrangian proposed in Carlini-Silva'14, for $H(x,p) = |p|^2/2$, is shown to converge when d = 1.
 - Extensions to the case of fractional and non-local operators in Chowdhury-Ersland-Jakobsen'22.
 - Application to price formation MFG model by Ashrafyan-Gomes'24.
 - An approximating MFG with discrete time and finite state space is proposed in Hadikhanloo-Silva'19. Convergence is obtained in general dimensions.
 - Fourier methods, Nuberkyan, Saude ('19) and Liu, Jacobs, Li, Nuberkyan, Osher ('20)
- Non-coercive case:
 - See Gianatti-Silva'22 and Gianatti-Silva-Z'2023 where a relaxed definition of the equilibrium is used and an approximation based on discrete time finite state MFG is introduced.

Lagrange-Galerkin method for the first order MFG system

Main idea: Apply a semi-Lagrangian scheme to the HJB equation then couple it with a Lagrange-Galerkin scheme for the continuity equation.

Lagrange-Galerkin method for the first order MFG system

Main idea: Apply a semi-Lagrangian scheme to the HJB equation then couple it with a Lagrange-Galerkin scheme for the continuity equation.

Assumptions:

• The Hamiltonian *H* is given by

$$H(x,p) = \sup_{a \in \mathbb{R}^d} \{ -\langle a, p \rangle - L(x,a) \} \text{ for all } x, p \in \mathbb{R}^d,$$

where *L* is of class C^2 , and for all $x, a \in \mathbb{R}^d$, we have

$$\begin{split} L(x,a) &\leq C(|a|^2+1), \\ |D_x L(x,a)| &\leq C(|a|^2+1), \\ C|b|^2 &\leq D_{aa}^2 L(x,a)(b,b), \\ D_{xx}^2 L(x,a)(y,y) &\leq C(|a|^2+1)|y|^2. \end{split}$$

These assumptions on L imply that H has quadratic growth and

$$|D_p H(x,p)| \le C(1+|p|)$$
 for all $x, p \in \mathbb{R}^d$.

A typical example is $H(x,p) = a(x)|p|^2 + \langle b(x), p \rangle$, with *a* and *b* of class C_b^2 and *a* bounded from below by a strictly positive constant.

• *F* and *G* are bounded, continuous, and for every $\mu \in \mathcal{P}^1(\mathbb{R}^d)$,

(Lip)
$$|F(x,\mu) - F(y,\mu)| + |G(x,\mu) - G(y,\mu)| \le C|x-y|,$$

(SC) $F(x+y,\mu) - 2F(x,\mu) + F(x-y,\mu) \le C|y|^2,$
(SC) $G(x+y,\mu) - 2G(x,\mu) + G(x-y,\mu) \le C|y|^2.$

Notice that no differentiability is assumed for *F* and *G*.

• m_0^* has compact support and $m_0^* \in L^p(\mathbb{R}^d)$ for some $p \in (1, \infty]$.

Approximation to the HJB equation

Let $\mu \in C([0, T]; \mathcal{P}_1(\mathbb{R}^d))$ and consider the HJB equation

$$-\partial_t u + H(x, Du) = F(x, \mu(t)) \quad \text{in } [0, T] \times \mathbb{R}^d,$$

 $u(T,x)=G(x,\mu(T)) \quad \text{in } \mathbb{R}^d.$

If $u[\mu]$ denotes its solution, then for every $(t, x) \in [0, T] \times \mathbb{R}^d$,

$$u[\mu](t,x) = \inf_{\alpha} \int_{t}^{T} \underbrace{L(\gamma(s), \alpha(s)) + F(\gamma(s), \mu(s))}_{\mathcal{A}(s)} ds + \underbrace{G(\gamma(T), \mu(T))}_{\mathcal{A}(s)} ds + \underbrace{G(\gamma(T), \mu(T)}_{\mathcal{A}(s)} ds +$$

Running cost

Final cost

 γ satisfies $\dot{\gamma}(s) = -\alpha(s)$ in $]s, T[, \gamma(t) = x.$

Approximation to the HJB equation

Let $\mu \in C([0, T]; \mathcal{P}_1(\mathbb{R}^d))$ and consider the HJB equation

$$-\partial_t u + H(x, Du) = F(x, \mu(t)) \quad \text{in } [0, T] \times \mathbb{R}^d,$$

 $u(T, x) = G(x, \mu(T))$ in \mathbb{R}^d .

If $u[\mu]$ denotes its solution, then for every $(t, x) \in [0, T] \times \mathbb{R}^d$,

$$u[\mu](t,x) = \inf_{\alpha} \int_{t}^{T} \underbrace{L(\gamma(s),\alpha(s)) + F(\gamma(s),\mu(s))}_{ds} ds + \underbrace{G(\gamma(T),\mu(T))}_{ds}$$

Running cost

Final cost

$$\gamma$$
 satisfies $\dot{\gamma}(s) = -\alpha(s)$ in]s, $T[, \gamma(t) = x$.

Proposition:

The value function is uniformly bounded, and the following hold:

(Lip)
$$|u[\mu](t,x) - u[\mu](t,y)| \le C|x-y|,$$

(SC) $u[\mu](x+y,\mu) - 2u[\mu](x,\mu) + u[\mu](x-y,\mu) \le C|y|^2.$

• $u[\mu]$ satisfies the Dynamic Programming Principle:

$$u[\mu](t,x) = \inf_{\alpha \in L^2(\mathbb{R}^d)} \left\{ \int_t^{t+h} [L(\gamma(s),\alpha(s)) + F(\gamma(s),\mu(s)] ds + u[\mu](t+h,\gamma(t+h)) \right\}$$

for all $h \in [0, T - t]$.

- Set $\Delta t > 0$ as the time step and let $t_k = k \Delta t$, $k = 0, \dots N_T$.
- Semi-discrete DPP: let $u_k[\mu](x) \approx u[\mu](t_k, x)$ be such that

$$u_k[\mu](x) = \inf_{a \in \mathbb{R}^d} \Delta t[L(x, a) + F(x, \mu(t_k)] + u_{k+1}[\mu](x - a\Delta t)$$

- Set $\Delta t > 0$ as the time step and let $t_k = k \Delta t$, $k = 0, \dots N_T$.
- Semi-discrete DPP: let $u_k[\mu](x) \approx u[\mu](t_k, x)$ be such that

$$u_{k}[\mu](x) = \inf_{a \in \mathbb{R}^{d}} \Delta t[L(x, a) + F(x, \mu(t_{k})] + u_{k+1}[\mu](x - a\Delta t)$$

► Discretization in space: let $\Delta x > 0$ be the space step and let $\mathcal{G}_{\Delta x} = \{x_i = i\Delta x \mid i \in \mathbb{Z}^d\}$ be the grid space.

- Set $\Delta t > 0$ as the time step and let $tk = k\Delta t$, $k = 0, \dots N_T$.
- Semi-discrete DPP: let $u_k[\mu](x) \approx u[\mu](t_k, x)$ be such that

$$u_k[\mu](x) = \inf_{a \in \mathbb{R}^d} \Delta t[L(x, a) + F(x, \mu(t_k)] + u_{k+1}[\mu](x - a\Delta t)$$

▶ Discretization in space: let Δx > be the space step and let $\mathcal{G}_{\Delta x} = \{x_i = i\Delta x \mid i \in \mathbb{Z}^d\}$ be the grid space.

As in Carlini-S'14, given $(\Delta t, \Delta x)$ we consider the following **semi-Lagrangian** scheme for the HJB equation:

$$u_{k,i} = \inf_{a \in \mathbb{R}^d} \{ \Delta t L(x_i, a) + I^1[u_{k+1, \cdot}](x_i - \Delta t a) \} + \Delta t F(x_i, \mu(t_k)), \\ u_{N,i} = G(x_i, \mu(T)),$$

where, given ϕ defined on $\mathcal{G}_{\Delta x} = \{x_i = \Delta x \mid i \in \mathbb{Z}^d\}$

$$\mathfrak{l}^1[\phi](x) = \sum_{i \in \mathbb{Z}^d} eta_i^1(x) \phi(x_i), \quad ext{for all } x \in \mathbb{R}^d,$$

where $\{\beta_i^1 | i \in \mathbb{Z}^d\}$ is the \mathbb{Q}_1 -basis defined on the regular mesh $\mathcal{G}_{\Delta x}$.

As in Carlini-S'14, given $(\Delta t, \Delta x)$ we consider the following semi-Lagrangian scheme for the HJB equation:

$$u_{k,i} = \inf_{a \in \mathbb{R}^d} \left\{ \Delta t L(x_i, a) + I^1[u_{k+1, \cdot}](x_i - \Delta t a) \right\} + \Delta t F(x_i, \mu(t_k)),$$

$$u_{N,i} = G(x_i, \mu(T)),$$

where, given ϕ defined on $\mathcal{G}_{\Delta x} = \{x_i = \Delta x \mid i \in \mathbb{Z}^d\}$

$$\mu^1[\phi](x) = \sum_{i \in \mathbb{Z}^d} \beta_i^1(x)\phi(x_i), \quad \text{for all } x \in \mathbb{R}^d,$$

where $\{\beta_i^1 | i \in \mathbb{Z}^d\}$ is the \mathbb{Q}_1 -basis defined on the regular mesh $\mathcal{G}_{\Delta x}$.

This scheme is shown to be consistent, stable, and preserves:

- (Lip) The Lipschitz property.
- (SC) The semiconcavity.

Given $\varepsilon > 0$ and a standard mollifier ρ_{ε} , we set $\Delta = (\Delta t, \Delta x, \varepsilon)$ and

 $u^{\Delta}[\mu](t,x) = (\rho_{\varepsilon} * I[u_k](x)) \quad \text{ for all } t \in [t_k, t_{k+1}), x \in \mathbb{R}^d.$

- $u^{\Delta}[\mu]$ preserves the Lipschitz property.
- The following semi-concavity estimate holds:

$$\langle D_{xx}^2 u^{\Delta}[\mu](t,x)y,y\rangle \leq C \left(1+\left(\frac{\Delta x}{\varepsilon^2}\right)^2\right)|y|^2.$$

▶ <u>Theorem</u>: Under suitable assumptions on the parameters, if $\mu_n \to \mu$ and $\Delta_n \to 0$, then $u^{\Delta_n}[\mu_n] \to u[\mu]$ uniformly over compact sets, and $D_x u^{\Delta_n}[\mu_n] \to D_x u[\mu]$ a.e. Let us consider the following continuity equation

$$\partial_t m - \operatorname{div}(D_p H(x, D_x u[\mu])m) = 0 \quad \text{in } (0, T) \times \mathbb{R}^d,$$

$$m(0) = m_0^*.$$

Using the properties of $u[\mu]$, one can show the existence of $m[\mu]$ solution to the continuity equation such that:

- $m[\mu](t, \cdot)$ has a compact support, independent of μ .
- Mass conservation hold

```
||m[\mu](t,\cdot)||_{L^p} \le C ||m_0^*||_{L^p}, for all t \in (0,T).
```

where C is independent of p.

To discretize the MFG system, we focus on

$$\partial_t m - \operatorname{div}(D_p H(x, D_x u^{\Delta}[\mu])m) = 0 \quad \text{in } (0, T) \times \mathbb{R}^d,$$

$$m(0) = m_0^*.$$

To discretize the MFG system, we focus on

$$\begin{split} \partial_t m &-\operatorname{div}(D_p H(x, D_x u^{\Delta}[\mu])m) = 0 \quad \text{in} \ (0, T) \times \mathbb{R}^d, \\ m(0) &= m_0^*. \end{split}$$

Since u^{Δ} is smooth w.r.t state, this equation has a unique solution

$$m^{\Delta}[\mu](t,\cdot) = \Phi^{\Delta}[\mu](0,t,\cdot) \sharp m_0^*,$$

where $\Phi^{\Delta}[\mu](s, t, x)$ is the solution, at time *t*, of the ODE:

$$\begin{split} \dot{\gamma}(r) &= -D_p H(\gamma(r), D_x u^{\Delta}[\mu](r, \gamma(r))) \quad \text{in } (s, T), \\ \gamma(s) &= x. \end{split}$$

Equivalently, for ϕ integrable with respect to $m^{\Delta}[\mu](s)$,

$$\int_{\mathbb{R}^d} \phi(x) \, dm^{\Delta}[\mu](t)(x) = \int_{\mathbb{R}^d} \phi(\Phi^{\Delta}[\mu](s,t,x)) \, dm^{\Delta}[\mu](s)(x) \tag{CE}$$

To discretize the MFG system, we focus on

$$\begin{split} \partial_t m &-\operatorname{div}(D_p H(x, D_x u^{\Delta}[\mu])m) = 0 \quad \text{in} \ (0, T) \times \mathbb{R}^d, \\ m(0) &= m_0^*. \end{split}$$

Since u^{Δ} is smooth w.r.t state, this equation has a unique solution

$$m^{\Delta}[\mu](t,\cdot) = \Phi^{\Delta}[\mu](0,t,\cdot) \sharp m_0^*,$$

where $\Phi^{\Delta}[\mu](s, t, x)$ is the solution, at time *t*, of the ODE:

$$\begin{split} \dot{\gamma}(r) &= -D_{p}H(\gamma(r), D_{x}u^{\Delta}[\mu](r,\gamma(r))) \quad \text{in } (s,T), \\ \gamma(s) &= x. \end{split}$$

Equivalently, for ϕ integrable with respect to $m^{\Delta}[\mu](s)$,

$$\int_{\mathbb{R}^d} \phi(x) \, dm^{\Delta}[\mu](t)(x) = \int_{\mathbb{R}^d} \phi(\Phi^{\Delta}[\mu](s,t,x)) \, dm^{\Delta}[\mu](s)(x) \tag{CE}$$

▶ We approximate $\Phi^{\Delta}[\mu](t_k, t_{k+1}, x)$ by explicite one-step Euler scheme

$$\Phi_k^{\Delta}[\mu](x) = x - \Delta t D_p H(x, D_x u^{\Delta}[\mu](t_k, x)).$$

► Let $\{\beta_i\}_{i \in \mathbb{Z}^d}$ be a FE basis and approximate $m^{\Delta}[\mu](t_k)$ by

$$\mathbf{M}^{\Delta}[\mu](t_k, x) = \sum_{i \in \mathbb{Z}^d} m_{k,i} \beta_i(x).$$

• Using this approximation and taking $\phi = \beta_j$ in (CE), we get

$$\sum_{i\in\mathbb{Z}^d}m_{k+1,i}\int_{\mathbb{R}^d}\beta_i(x)\beta_j(\Phi_k^{\Delta}[\mu](x))\mathrm{d}x=\sum_{i\in\mathbb{Z}^d}m_{k,i}\int_{\mathbb{R}^d}\beta_j(\Phi_k^{\Delta}[\mu](x))\beta_i(x)\mathrm{d}x.$$

► Let $\{\beta_i\}_{i \in \mathbb{Z}^d}$ be a FE basis and approximate $m^{\Delta}[\mu](t_k)$ by

$$\mathbf{M}^{\Delta}[\mu](t_k, x) = \sum_{i \in \mathbb{Z}^d} m_{k,i} \beta_i(x).$$

• Using this approximation and taking $\phi = \beta_j$ in (CE), we get

$$\sum_{i\in\mathbb{Z}^d}m_{k+1,i}\int_{\mathbb{R}^d}\beta_i(x)\beta_j(\Phi_k^\Delta[\mu](x))\,\mathrm{d}x=\sum_{i\in\mathbb{Z}^d}m_{k,i}\int_{\mathbb{R}^d}\beta_j(\Phi_k^\Delta[\mu](x))\beta_i(x)\,\mathrm{d}x.$$

• Let us choose $\beta_i = \beta_i^0 = \mathbb{I}_{E_i}$, where

$$E_i = [x_i - \Delta x/2, x_i + \Delta x/2]^d.$$

▶ Let $\{\beta_i\}_{i \in \mathbb{Z}^d}$ be a FE basis and approximate $m^{\Delta}[\mu](t_k)$ by

$$\mathbf{M}^{\Delta}[\mu](t_k, x) = \sum_{i \in \mathbb{Z}^d} m_{k,i} \beta_i(x).$$

• Using this approximation and taking $\phi = \beta_j$ in (CE), we get

$$\sum_{i\in\mathbb{Z}^d}m_{k+1,i}\int_{\mathbb{R}^d}\beta_i(x)\beta_j(\Phi_k^{\Delta}[\mu](x))\,\mathrm{d}x=\sum_{i\in\mathbb{Z}^d}m_{k,i}\int_{\mathbb{R}^d}\beta_j(\Phi_k^{\Delta}[\mu](x))\beta_i(x)\,\mathrm{d}x.$$

• Let us choose $\beta_i = \beta_i^0 = \mathbb{I}_{E_i}$, where

$$E_i = [x_i - \Delta x/2, x_i + \Delta x/2]^d.$$

This choice yields the following Lagrange-Galerkin scheme:

$$m_{k+1,i} = \frac{1}{(\Delta x)^d} \sum_j m_{k,j} \int_{E_j} \beta_i^0 (\Phi_k^{\Delta}[\mu](x)) dx$$
(LG)
$$m_{0,i} = \frac{1}{(\Delta x)^d} \int_{E_i} m_0^*(x) dx.$$

Interpretation of the scheme

We observe that

$$\int_{E_j} \beta_i^0(\Phi_k^{\Delta}[\mu](x)) \mathrm{d}x = \int_{\mathbb{R}^d} \mathbb{I}_{E_j \cap \Phi_k^{\Delta}[\mu]^{-1}(E_i)}(x) \mathrm{d}x = \mathcal{L}^d \left(E_j \cap \Phi_k^{\Delta}[\mu]^{-1}(E_i) \right),$$

 \Rightarrow equivalent to the scheme introduced in Picolli-Tosin'11.

Description of the scheme in the 2 dimensional case
• Given $(m_{k,i})$ solution to (LG), for $t \in [t_k, t_{k+1})$, let us define

$$\mathbf{M}^{\Delta}[\mu](t,x) = \left(\frac{t_{k+1}-t}{\Delta t}\right) \sum_{i \in \mathbb{Z}^d} m_{k,i} \beta_i(x) + \left(\frac{t-t_k}{\Delta t}\right) \sum_{i \in \mathbb{Z}^d} m_{k+1,i} \beta_i(x).$$

- ► $\mathsf{M}^{\Delta}[\mu] \in C([0, T]; \mathcal{P}^1(\mathbb{R}^d)).$
- ► There exists $C^* > 0$ such that $supp(M^{\Delta}[\mu](t, \cdot)) \subseteq B(0, C^*)$.
- ▶ The map $[0, T] \ni t \mapsto \mathsf{M}^{\Delta}[\mu](t, \cdot) \in \mathcal{P}^1(\mathbb{R}^d)$ is Lipschitz continuous.

• If
$$\Delta x = O(\Delta t)$$
 and $\Delta t = O(\varepsilon^2)$, then

 $\|\mathbf{M}^{\Delta}[\mu](t,\cdot)\|_{L^{p}} \leq C \|m_{0}^{*}\|_{L^{p}}.$

The proof of the L^p -stability mainly relies on the following facts:

- $\Delta t / \varepsilon$ small enough $\Rightarrow \Phi_k^{\Delta}[\mu]$ is one-to-one.
- The estimate on $D_{xx}^2 u^{\Delta}[\mu](t_k, \cdot)$ implies that

$$\det(D_x \Phi_k^{\Delta}[\mu](x))^{-1} \le 1 + C \Delta t.$$

Let $u^{\Delta}[\mu]$ be the solution to the SL scheme and M^{Δ} the solution to the LG scheme, then:

(MFG)₁ is discretized as follows:

Find
$$\mu$$
 such that $\mu = M^{\Delta}[\mu]$ (MFG) ^{Δ} .

Using the Brouwer's fixed point theorem, we show that $(\rm MFG)^{\Delta}$ admits at least one solution.

Convergence holds in general state dimensions.

Theorem (Carlini-Silva-Z'23)

Let $\Delta_n = (\Delta t_n, \Delta x_n, \varepsilon_n) \in]0, \infty[^3$, let m^n be a solution to $(MFG)^{\Delta_n}$, and $u^n = u^{\Delta}[m_n]$. Assume that, as $\Delta_n \to 0$, $\Delta x_n = o(\Delta t_n)$ and $\Delta t_n = O(\varepsilon_n^2)$. Then, up to some subsequence, (u^n, m^n) converges to a solution (u^*, m^*) of $(MFG)_1$. In order to implement the scheme, we follow Morton-Priestley-Süli'88 by considering the following approximation called area weighting

$$\Phi_k^{\Delta}[\mu](x) \approx x - \Delta t D_p H(x_i, D_x v^{\Delta}[\mu](t_k, x_i)) \quad \text{if } x \in E_i,$$

to obtain

$$\int_{E_j} \beta_i^0(\Phi_k^{\Delta}[\mu](x)) \mathrm{d}x = \beta_i^1(\Phi_k^{\Delta}[\mu](x_j)).$$

In order to implement the scheme, we follow Morton-Priestley-Süli'88 by considering the following approximation called area weighting

$$\Phi_k^{\Delta}[\mu](x) \approx x - \Delta t D_p H(x_i, D_x v^{\Delta}[\mu](t_k, x_i)) \quad \text{if } x \in E_i,$$

to obtain

$$\int_{E_j} \beta_i^0(\Phi_k^{\Delta}[\mu](x)) \mathrm{d}x = \beta_i^1(\Phi_k^{\Delta}[\mu](x_j)).$$

- ► We use Picard iterations to solve (MFG)^Δ
- ► In the numerical test below, we set d = 2, and we consider the MFG problem defined on $[0,1] \times [0,2]^2$, and set $\Delta t = (\Delta x)^{\frac{2}{3}}$

$$m_0^*(x) = \frac{\nu(x)}{\int_{[0,2]^2} \nu(x) dx} \mathbb{I}_{[0,2]^2} \quad \text{with } \nu(x) = e^{-|x-x_0|^2/0.01} \quad \text{and } x_0 = (0.75, 0.75).$$

We also consider

$$H(x,p) = \frac{|p|^2}{2}, \quad G = 0$$

and

$$F(x,m) = \underbrace{\gamma \min(R, |x - x_f|^2)}_{+} + \underbrace{(\rho_{\sigma} * m)(x)}_{+}$$

penalize the deviation from x_f encourage avoiding the crowd

with $x_f = (1.75, 1.75)$.

In the figures below, we display the distributions for $\gamma = 0.5$ and $\gamma = 3$.

We also consider

$$H(x,p) = \frac{|p|^2}{2}, \quad G = 0$$

and

$$F(x,m) = \underbrace{\gamma \min(R, |x - x_f|^2)}_{+} + \underbrace{(\rho_{\sigma} * m)(x)}_{+}$$

penalize the deviation from x_f encourage avoiding the crowd

with $x_f = (1.75, 1.75)$.

In the figures below, we display the distributions for $\gamma = 0.5$ and $\gamma = 3$.

 $\gamma = 0.5$

We also consider

$$H(x,p) = \frac{|p|^2}{2}, \quad G = 0$$

and

$$F(x,m) = \underbrace{\gamma \min(R, |x - x_f|^2)}_{+} + \underbrace{(\rho_{\sigma} * m)(x)}_{+}$$

penalize the deviation from x_f encourage avoiding the crowd

with $x_f = (1.75, 1.75)$.

In the figures below, we display the distributions for $\gamma = 0.5$ and $\gamma = 3$.

 $\gamma = 0.5$

 $\gamma = 3$

Newton iterations for second order MFG system

Ongoing work with E. Carlini and F. J. Silva

We consider the second order MFG system

$$\begin{cases} -\partial_t u - \nu \Delta u + H(x, Du) = F(m(t, x)) & \text{ in } \mathbb{T}^d \times [0, T] \\ \partial_t m - \nu \Delta m - \operatorname{div}(mH_p(x, Du)) = 0 & \text{ in } \mathbb{T}^d \times [0, T] \\ m(x, 0) = m_0(x), u(x, T) = u_T(x) & \text{ in } \mathbb{T}^d , \end{cases}$$
(MFG)₂

where

- $\nu > 0$
- \mathbb{T}^d stands for the flat torus $\mathbb{R}^d/\mathbb{Z}^d$
- *H* is a convex Hamiltonian
- F is local coupling

We consider the second order MFG system

$$\begin{cases} -\partial_t u - \nu \Delta u + H(x, Du) = F(m(t, x)) & \text{ in } \mathbb{T}^d \times [0, T] \\ \partial_t m - \nu \Delta m - \operatorname{div}(mH_p(x, Du)) = 0 & \text{ in } \mathbb{T}^d \times [0, T] \\ m(x, 0) = m_0(x), u(x, T) = u_T(x) & \text{ in } \mathbb{T}^d , \end{cases}$$
(MFG)₂

where

- ν > 0
- \mathbb{T}^d stands for the flat torus $\mathbb{R}^d/\mathbb{Z}^d$
- H is a convex Hamiltonian
- F is local coupling

Our aim is:

to propose a new numerical scheme by discretizing a Newton method in infinite dimension

- Y. Achdou, I. Capuzzo-Dolcetta ('10), Y. Achdou, F. Camilli, I. Capuzzo-Dolcetta ('12), Semi-implicit finite difference scheme computed through <u>Newton iterations</u>
- E. Carlini, F. J. Silva ('14, '15) Semi-Lagrangian scheme computed using fixed point-type iterations

- Y. Achdou, I. Capuzzo-Dolcetta ('10), Y. Achdou, F. Camilli, I. Capuzzo-Dolcetta ('12), Semi-implicit finite difference scheme computed through <u>Newton iterations</u>
- E. Carlini, F. J. Silva ('14, '15) Semi-Lagrangian scheme computed using fixed point-type iterations
- H. Li, Y. Fan, and L. Ying ('21). Multiscale method for mean field games. Second order accurate
- S. Cacace, F. Camilli, A. Goffi ('23), Q. Tang, M. Lauriére ('23), Policy iteration method.
- Recent interest in machine learning techniques to solve (MFG)₂, e.g: deep learning, deep Galerkin method, reinforcement learning, etc..
- Summaries on numerical methods and learning methods for MFG: Y. Achdou, M. Laurière ('20) and M. Lauriére ('22).

Assumptions: For $\alpha \in (0, 1)$:

- 1. m_0 is non-negative, $m_0 \in P(\mathbb{T}^d) \cap C^{2+\alpha}(\mathbb{T}^d)$, and $u_T \in C^{2+\alpha}(\mathbb{T}^d)$.
- 2. *F*, *F*', *F*'' are uniformly bounded mappings from $\mathbb{R}^+ \to \mathbb{R}$. Moreover, $F'(\cdot) \ge 0$.
- 3. $H: \mathbb{T}^d \times \mathbb{R}^d \to \mathbb{R}$ is continuous, twice differentiable in *p*, and there exist constants c, C > 0 such that

$$cl \leq H_{pp}(x,p) \leq Cl$$
, for all $(x,p) \in \mathbb{T}^d \times \mathbb{R}^d$.

Under the above assumptions, $(MFG)_2$ admits one classical solution.

Newton method

Following (Camilli Tang 2023) we define the map

$$\mathcal{F}: (u,m) \rightarrow \left(\begin{array}{c} -\partial_t u - v\Delta u + H(x,Du) - F(m) \\ \partial_t m - v\Delta m - \operatorname{div}(mH_p(x,Du)) \\ u(T) - u_T(x) \\ m(0) - m_0(x) \end{array} \right).$$

Then

$$(MFG)_2 \Leftrightarrow \mathcal{F}(u, m) = 0.$$

The corresponding Newton's iterations can be written as

$$J\mathcal{F}(u^{n-1},m^{n-1})((u^n,m^n)-(u^{n-1},m^{n-1})) = -\mathcal{F}(u^{n-1},m^{n-1}).$$

Applying the Newton's iterations, we get the system

$$\begin{cases} -\partial_t u^n - \nu \Delta u^n + q^n D u^n = q^n D u^{n-1} - H(D u^{n-1}) + F(m^{n-1}) + F'(m^{n-1})(m^n - m^{n-1}) \\ \partial_t m^n - \nu \Delta m^n - \operatorname{div}(m^n q^n) = \operatorname{div}(m^{n-1} H_{pp}(D u^{n-1})(D u^n - D u^{n-1})) \\ m^n(x, 0) = m_0(x), \quad u^n(x, T) = u_T(x) \end{cases}$$
(MFG)_{NF}

with $q^n = H_p(Du^{n-1})$.

The Newton methods reads:

Given (u^0, m^0) , find (u^n, m^n) by solving $(MFG)_{NE}$ for $n \ge 1$.

Theorem (Camilli Tang 2023)

If the initial guess (u^0, m^0) is close enough to the (u, m) solution of $(MFG)_2$, then

$$||u^n - u||_{C^{0,1}} + ||m^n - m||_{C^0} \le C(||u^{n-1} - u||_{C^{0,1}} + ||m^{n-1} - m||_{C^0})^2.$$

Notation:

$$\|u\|_{C^{0,1}} = \|u\|_{C^0} + \|Du\|_{C^0}$$

The question now is how to solve $(MFG)_{NE}$

- For that we consider two different approaches
 - 1. An explicit semi-Lagrangian scheme
 - 2. An implicit upwind finite difference scheme
- A comparative analysis between the 2 aftermentioned schemes and other schemes from the literature.
- The comparison is based on the relative errors, number of iterations, CPU time and the robustness when $\nu \rightarrow 0$.
- For simplicity, we consider d = 2 and the quadratic Hamiltonian:

$$H(x,p) = \frac{|p|^2}{2} - V(x)$$

Main ingredients

• Given a grid function v, we introduce the first order central differences operators

$$(D_1 v)_{i,j} = \frac{v_{i+1,j} - v_{i-1,j}}{2h} \quad i, j = 0, \cdots, N_h - 1,$$

$$(D_2 v)_{i,j} = \frac{v_{i,j+1} - v_{i,j-1}}{2h} \quad i, j = 0, \cdots, N_h - 1,$$

The operator D_h as

$$(D_h v)_{i,j} = ((D_1 v)_{i,j}, (D_2 v)_{i,j}) \quad i, j = 0, \cdots, N_h - 1.$$

The five point discrete Laplace operator:

$$(\Delta_h v)_{i,j} = \frac{1}{h^2} (-4v_{i,j} + v_{i+1,j} + v_{i-1,j} + v_{i,j+1} + v_{i,j-1}) \quad i,j = 0, \cdots, N_h - 1.$$

• Given a grid function with 2 components $q = (q_1, q_2)$, we define the discrete divergence operator

$$(\operatorname{div}_{h}(vq))_{i,j} = \frac{1}{2h} \left(v_{i+1,j}(q_{1})_{i+1,j} - v_{i-1,j}(q_{1})_{i-1,j} + v_{i,j+1}(q_{2})_{i,j+1} - v_{i,j-1}(q_{2})_{i,j-1} \right)$$

Given

$$L^{n}(t,x) = \frac{|q^{n}(t,x)|^{2}}{2} + F(m^{n-1}(t,x)) + F'(m^{n-1}(t,x))(m^{n}(t,x) - m^{n-1}(t,x)) - V(x).$$

we consider

$$\begin{cases} -\partial_t u^n - \frac{\sigma^2}{2} \Delta u^n + q^n D u^n - L^n(t, x) = 0 & \text{ in } [0, T] \times \mathbb{T}^2, \\ u^n(x, T) = G(x) & \text{ in } \mathbb{T}^2, \end{cases}$$

with $\frac{\sigma^2}{2} = \nu$.

Feynman-Kac formula

$$u^{n}(t,x) = \mathbb{E}\left[\int_{t}^{T} L^{n}(s, X^{t,x}(s)) \mathrm{d}s + G(X^{t,x}(T))\right],$$

where $X^{t,x}$ denotes characteristics solving

$$\begin{cases} dX(s) = q^{n}(s, X(s)) + \sigma dW(s) & \text{for } s \in (t, T) \\ X(t) = x. \end{cases}$$

Feynman-Kac formula in [t_k, t_{k+1}]

$$u^{n}(t_{k},x) = \mathbb{E}\left[\int_{t_{k}}^{t_{k+1}} L^{n}(s, X^{t_{k},x}(s))ds + u^{n}(t_{k+1}, X^{t_{k},x}(\Delta t))\right]$$

Semi discretization in time by one-step weak Euler:

$$X^{t_k,x}(t_{k+1}) \approx x + \Delta t q^n(t_k,x) + \sigma \Delta W,$$

where $P(\sigma \Delta W = \pm \sqrt{2\Delta t}) = \frac{1}{4}$

Rectangular rule for running cost

$$\int_{t_k}^{t_{k+1}} L(s, X^{t_k, x}) \mathrm{d}s \approx \Delta t L(t_k, x)$$

• Let us define $\{u_{i,j}^{n,k}\}$ as the solution to

$$u_{i,j}^{n,k} = \frac{1}{4} \sum_{\ell=1}^{4} I[u^{n,k+1}]((x_{i,j} + \Delta tq^n(t_k, x_{i,j}) + \sqrt{2\Delta t}\sigma e^\ell)_p) + \Delta t L^n(t_k, x_{i,j}),$$

$$u^{n,N_t} = u_T(x_{i,j}).$$
(SL)

Adjoint SL scheme for the forward equation

Given

$$G(t,x) = \operatorname{div}(m^{n-1}(t,x)(Du^{n}(t,x) - Du^{n-1}(t,x)))$$

let us consider

$$\begin{cases} \partial_t m^n - \frac{\sigma^2}{2} \Delta m^n - \operatorname{div}(m^n q^n) = G(t, x) & \text{in } [0, T] \times \mathbb{T}^2, \\ m^n(0, x) = m_0(x) & \text{in } \mathbb{T}^2. \end{cases}$$

Using the duality property

$$\int L(f)g\mathrm{d}x = \int L^*(g)f\mathrm{d}x$$

of the operators

$$L(u) := -\frac{\sigma^2}{2}\Delta u + q(x)^{\top} Du$$
$$L^*(m) := -\frac{\sigma^2}{2}\Delta m - \operatorname{div}(q(x)m)$$

we derive a scheme for the forward equation.

• We define $\{m_{i,i}^{n,k}\}$ as solution to

$$\begin{cases} m_{i,j}^{n,k+1} = \frac{1}{4} \sum_{\ell=1}^{4} I^*[m^{n,k}](y_{i,j}^{\ell}(Q^{n,k})) + \Delta t(\operatorname{div}_h(m^{n-1,k+1}(D_h u^{n-1,k+1} - D_h u^{n,k+1})))_{i,j} \\ m_{i,j}^{n,0} = m_0(x_{i,j}), \end{cases}$$
(Adjoint-SL)

▶ $I^*[f](y_{i,j}^{\ell}(Q^{n,k}))$ is the adjoint operator of $f \to I[f](y_{i,j}^{\ell}(Q^{n,k}))$

- Denote by *U* and *M* vectors in $\mathbb{R}^{(N_t+1)N_h^2}$
- Combining (SL) and (Adjoint-SL), the semi-Lagrangian scheme to system (MFG)_{NE} can be written in a matrix form:

- Denote by U and M vectors in $\mathbb{R}^{(N_t+1)N_h^2}$
- Combining (SL) and (Adjoint-SL), the semi-Lagrangian scheme to system (MFG)_{NE} can be written in a matrix form:

Given (U^{n-1}, M^{n-1}) , define $Q^n := D_h U^{n-1}$ and compute (U^n, M^n) as solution of the Hamiltonian system

$$\begin{bmatrix} \mathbb{A} & -\mathbb{W} \\ -\mathbb{Z} & -\mathbb{A}^* \end{bmatrix} \begin{bmatrix} U \\ M \end{bmatrix} = \begin{bmatrix} \mathbb{b} \\ \mathbb{c} \end{bmatrix}.$$
 (Newton-SL)

- Denote by U and M vectors in $\mathbb{R}^{(N_t+1)N_h^2}$
- Combining (SL) and (Adjoint-SL), the semi-Lagrangian scheme to system (MFG)_{NE} can be written in a matrix form:

Given (U^{n-1}, M^{n-1}) , define $Q^n := D_h U^{n-1}$ and compute (U^n, M^n) as solution of the Hamiltonian system

$$\begin{bmatrix} A & -W \\ -Z & -A^* \end{bmatrix} \begin{bmatrix} U \\ M \end{bmatrix} = \begin{bmatrix} b \\ c \end{bmatrix}.$$
 (Newton-SL)

<u>Proposition</u>: If $M^n > 0$, then for any $n \in \mathbb{N}$ there exists a unique solution (U^n, M^n) to (Newton-SL).

• Given q^n, m^n, m^{n-1} , we define $\{u_{i,j}^{n,k}\}$ for $k = 0, ..., N_{\Delta t} - 1$ as the solution to the following Implicit FD scheme:

$$\begin{cases} u_{i,j}^{n,k} = u_{i,j}^{n,k+1} + \Delta t \mu_{k,i} \Delta_h u_{i,j}^{n,k} + \Delta t q^n(t_k, x_{i,j}) D_h u_{i,j}^{n,k} + \Delta t L(t_k, x_{i,j}) \\ u_{i,j}^{n,N_{\Delta t}} = u_T(x_{i,j}). \end{cases}$$

where

$$\mu_{i,j}^{k} = \nu + \frac{h}{2}(|q^{n}(t_{k}, x_{i,j})|)$$

- Computing the adjoint of the linearized backward equation to approximate the forward equation
- The Newton iteration system (MFG)_{NE} is approximated by

$$\begin{bmatrix} \mathbb{F} & -\tilde{\mathbb{W}} \\ -\tilde{\mathbb{Z}} & -\mathbb{F}^* \end{bmatrix} \begin{bmatrix} U \\ M \end{bmatrix} = \begin{bmatrix} \tilde{\mathbb{b}} \\ \tilde{\mathbb{c}} \end{bmatrix}, \qquad (\text{Newton-FD})$$

Algorithm Newton iterations for mean field games

- 1: **Input:** Initial guesses u^0 , m^0 , and tolerance τ
- 2: Output: Solution to the Newton iterations system (MFG)_{NE}
- 3: *n* ← 0
- 4: repeat
- 5: Compute m^{n+1} and u^{n+1} by Newton-SL or Newton-FD
- 6: $\operatorname{err}(\mathbf{m}) \leftarrow \| m^{n+1} m^n \|_{\infty}$
- 7: $\operatorname{err}(\mathbf{u}) \leftarrow \| u^{n+1} u^n \|_{\infty}$
- 8: Update *Qⁿ*
- 9: $n \leftarrow n+1$

```
10: until err(m) < \tau and err(u) < \tau
11: return m^{n+1}, u^{n+1}
```

- Through numerical tests, we conduct a comparative analysis between:
 - 1. Newton-SL
 - 2. Newton-FD
 - 3. FD-Newton (Achdou, Capuzzo-Dolcetta and Camilli. 2010)
 - 4. SL-FP (Carlini and Silva 2014)

<u>Remark</u>: In FD-Newton, a numerical Hamiltonian should be defined in order to get a discrete finite difference scheme for (MFG)₂, while in Newton-FD we only use central difference to discretize the Hamiltonian, which gives a simpler structure than FD-Newton.

Test 1: One dimensional MFG with a reference solution

- We consider a MFG system in the time-space domain $[0, 0.05] \times (0, 1)$ with periodic boundary conditions at x = 0 and x = 1, and v = 0.1.
- The Hamiltonian *H* is given by : $H(x, p) = \frac{|p|^2}{2}$
- The initial condition is given by

$$m_0(x) = \begin{cases} 4\sin^2(2\pi(x-1/4)) & \text{if } x \in [1/4, 3/4] \\ \\ 0 & \text{otherwise,} \end{cases}$$

and

$$F(m) = -3m_0(x) + 4\min(4, m), \quad u_T(x) = 0, \text{ for } x \in (0, 1).$$

- The Newton stopping threshold is $\tau = 10^{-4}$.
- Reference solution to compare between the 4 schemes

Newton-SL						
h	$E_{\infty}(u)$	$E_{\infty}(m)$	Time	Iterations		
2.50 ·10 ⁻²	5.51 ·10 ⁻²	$1.64 \cdot 10^{-1}$	0.61s	6		
$1.25 \cdot 10^{-2}$	2.40 ·10 ⁻²	$1.16 \cdot 10^{-1}$	2.77s	7		
$6.25 \cdot 10^{-3}$	1.83 ·10 ⁻²	6.61 ·10 ⁻²	13.92s	7		
$3.125 \cdot 10^{-3}$	4.50 ·10 ⁻³	1.41 ·10 ⁻²	80.60s	7		
SL-FP (Carlini and Silva'14)						
h	$E_{\infty}(u)$	$E_{\infty}(m)$	Time	Iterations		
2.50 ·10 ⁻²	5.75 ·10 ⁻²	1.62 ·10 ⁻¹	8.09s	10		
$1.25 \cdot 10^{-2}$	2.84 ·10 ⁻²	$1.11 \cdot 10^{-1}$	40.79s	10		
$6.25 \cdot 10^{-3}$	2.15 ·10 ^{−2}	5.84 ·10 ⁻²	259.72s	12		
3.125 ·10 ⁻³	9.50 ·10 ⁻³	$6.51 \cdot 10^{-3}$	2793.71s	12		

Table: Errors for the approximation of solution (u, m) using Newton-SL and SL-FP.

Newton-FD						
h	$E_{\infty}(u)$	$E_{\infty}(m)$	Time	Iterations		
2.50 ·10 ⁻²	$1.532 \cdot 10^{-1}$	3.42 ·10 ⁻²	1.48s	7		
$1.25 \cdot 10^{-2}$	6.71 ·10 ⁻²	1.83 ·10 ⁻²	12.27s	7		
$6.25 \cdot 10^{-3}$	3.37 ·10 ⁻²	9.51 ·10 ⁻³	68.10s	7		
3.125 ·10 ⁻³	1.91 ·10 ⁻²	7.38 ·10 ⁻³	436.01s	7		
FD-Newton (Achdou et al.'13)						
h	$E_{\infty}(u)$	$E_{\infty}(m)$	Time	Iterations		
2.50 ·10 ⁻²	1.23 ·10 ⁻¹	3.11 ·10 ⁻²	2.23s	7		
$1.25 \cdot 10^{-2}$	6.21 ·10 ⁻²	1.63 ·10 ⁻²	18.32s	8		
$6.25 \cdot 10^{-3}$	3.14 ·10 ⁻²	8.75 ·10 ⁻³	92.91s	8		
3.125 ·10 ⁻³	1.77 ·10 ⁻²	9.54 ·10 ⁻³	597.21s	8		

Table: Errors for the approximation of solution (u, m) using FD-Newton and Newton-FD.

- We consider a MFG system in the time-space domain [0,0.01]×]0,1[with periodic boundary conditions.
- We vary the diffusion coefficient, taking values of $\nu = 0.4$ and $\nu = 0.02$.
- We consider the following data

$$\begin{array}{lll} m_0(x) &=& 1+\frac{1}{2}\cos(2\pi x),\\ u_T(x) &=& \sin(4\pi x)+0.1\cos(10\pi x),\\ H(x,p) &=& |p|^2-V(x), \quad V(x)=200\cos(2\pi x)-10\cos(4\pi x),\\ F(m) &=& m^2. \end{array}$$

- The threshold τ for the Newton stopping iteration criteria is set to 10^{-4}
- Comparison between Newton-SL, Newton-FD and FD-Newton
- The results are coherent with H. Li, Y. Fan, and L. Ying ('21).

The distribution approximated with the three Newton schemes

Test 2: v = 0.4

The value function approximated with the three Newton schemes

Test 2: $\nu = 0.02$

- Breakdowns for Newton-FD and FD-Newton
- Newton-SL iterations error converge under the given threshold

Newton-SL iterations error for $\nu = 0.02$

Approximated *m* and *u* using Newton-SL

- ► We consider a MFG system in the time-space domain [0,1]×[0,1]² with periodic boundary conditions.
- ν = 1
- $H(x,y,p) = |p|^2 V(x,y)$
- $r = 10^{-4}$
- We consider the following data

$$V(x,y) = \cos(4\pi x) + \sin(2\pi x) + \sin(2\pi y), \quad F(m) = m^2,$$

$$m_0(x,y) = 1 + \frac{1}{2}\cos(2\pi x) + \frac{1}{2}\cos(2\pi y), \quad u_T(x,y) = \cos(2\pi y) + \cos(2\pi y).$$

- We solve the MFG system using Newton-SL
- The results are coherent with H. Li, Y. Fan, and L. Ying ('21).

The approximated distribution *m* at times t = 0, $\frac{N_t dt}{2}$, $\frac{3N_t dt}{4}$, *T*.

51/54

- FD-Newton and Newton-FD show similar behaviour in terms of CPU time and accuracy
- In our tests, Newton-SL needs the cheapest CPU time and shows comparable accuracy with respect to the other methods
- Newton-SL scheme works well in hyperbolic regime (ν small)

- E. Carlini and F. J. Silva, A fully discrete semi-Lagrangian scheme for a first order mean field game problem, SIAM Journal on Numerical Analysis, 52 (2014)
- E. Carlini, F. J. Silva, and A. Zorkot, A Lagrange–Galerkin scheme for first order mean field game systems, SIAM Journal on Numerical Analysis, 62 (2024)
- Y. Achdou and I. Capuzzo-Dolcetta. Mean field games: Numerical methods. SIAM Journal on Numerical Analysis, 48, 01 (2010).
- 🗐 E.Carlini, F.J.Silva and A. Zorkot Newton methods for MFGs, in preparation (2024).

Thank you