$$D_\mu$$
 vs $\langle \cdot, \cdot
angle^\pm_\mu$

Equivalence between two notions of viscosity solutions in the Wasserstein space

Averil Prost (LMI, INSA Rouen Normandie) Hasnaa Zidani (LMI, INSA Rouen Normandie)

> March 22, 2024 ANR COSS Meeting

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result
Aim of the tal	k			

$$H(\mu, D_{\mu}V(\mu)) = 0 \quad \mu \in \Omega, \qquad V(\mu) = \mathfrak{J}(\mu) \quad \mu \in \partial\Omega.$$
(1)

Definitions 000000	The tangent space	Semidifferentials 000000	Viscosity solutions	Main result
Aim of the tal	k			

$$H(\mu, D_{\mu}V(\mu)) = 0 \quad \mu \in \Omega, \qquad V(\mu) = \mathfrak{J}(\mu) \quad \mu \in \partial\Omega.$$
(1)

Here

• μ is a measure, Ω an open set of the Wasserstein space $\mathscr{P}_2(\mathbb{R}^d)$.

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result 0000
Aim of the tal	k			

$$H(\mu, D_{\mu}V(\mu)) = 0 \quad \mu \in \Omega, \qquad V(\mu) = \mathfrak{J}(\mu) \quad \mu \in \partial\Omega.$$
(1)

Here

- μ is a measure, Ω an open set of the Wasserstein space $\mathscr{P}_2(\mathbb{R}^d)$.
- $D_{\mu}V(\mu)$ is the application of the directional derivatives.

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result
Aim of the tal	k			

$$H(\mu, D_{\mu}V(\mu)) = 0 \quad \mu \in \Omega, \qquad V(\mu) = \mathfrak{J}(\mu) \quad \mu \in \partial\Omega.$$
(1)

Here

- μ is a measure, Ω an open set of the Wasserstein space $\mathscr{P}_2(\mathbb{R}^d)$.
- $D_{\mu}V(\mu)$ is the application of the directional derivatives.

Our aim Compare two notions of viscosity solutions for (1).

Definitions ●00000	The tangent space	Semidifferentials 000000	Viscosity solutions	Main result
Table of Cont	ants			

First definitions

- Geometric tangent space
- Generalized sub and superdifferentials
- Definitions of viscosity solutions
- The equivalence result

Definitions 0●0000	The tangent space	Semidifferentials	Viscosity solutions	Main result
Viscosity s	olutions			
In \mathbb{R}^d , viscos	ity solutions of $H(x, abla_{a})$	(xu) = 0 are equivalent	ly defined using	

• smooth test functions:

• sub and superdifferentials:

u is a subsolution if it is u.s.c, satisfies $u \leqslant \mathfrak{J}$, and if whenever $\varphi \in \mathcal{C}^1$ is such that $u - \varphi$ reaches a maximum at x,

there holds $H(x, \nabla \varphi(x)) \leqslant 0$.

Definitions 0●0000	The tangent space	Semidifferentials	Viscosity solutions	Main result
Viscosity s	olutions			
In \mathbb{R}^d , viscos	ity solutions of $H(x, abla_{a})$	(xu) = 0 are equivalent	ly defined using	

• smooth test functions:

• sub and superdifferentials:

u is a supersolution if it is l.s.c, satisfies $u \ge \mathfrak{J}$, and if whenever $\varphi \in \mathcal{C}^1$ is such that $u - \varphi$ reaches a minimum at x,

there holds $H(x, \nabla \varphi(x)) \ge 0$.

Definitions 0●0000	The tangent space	Semidifferentials	Viscosity solutions	Main result
Viscosity solu	itions			
In \mathbb{R}^d , viscosity	solutions of $H(x, abla_x)$	u(u)=0 are equivalently	y defined using	
• smooth te	st functions:	• sub a	and superdifferentials:	

u is a supersolution if it is l.s.c. satisfies $u \geq \mathfrak{J}$, and if whenever $\varphi \in \mathcal{C}^1$ is such that $u - \varphi$ reaches a minimum at x,

there holds $H(x, \nabla \varphi(x)) \ge 0$.

u is a subsolution if it is u.s.c. satisfies $u \leq \mathfrak{J}$, and if whenever a vector v belongs to the superdifferential of u at x,

there holds $H(x, v) \leq 0$.

Definitions 0●0000	The tangent space	Semidifferentials	Viscosity solutions	Main result
Viscosity s	olutions			
In \mathbb{R}^d , viscos	ity solutions of $H(x, abla_{x})$	$_{x}u)=0$ are equivalentl	y defined using	
• smooth	test functions:	• sub ·	and superdifferentials:	

u is a supersolution if it is l.s.c. satisfies $u \geq \mathfrak{J}$, and if whenever $\varphi \in \mathcal{C}^1$ is such that $u - \varphi$ reaches a minimum at x.

there holds $H(x, \nabla \varphi(x)) \ge 0$.

u is a supersolution if it is l.s.c. satisfies $u \geq \mathfrak{J}$, and if whenever a vector v belongs to the subdifferential of u at x.

there holds $H(x, v) \ge 0$.

Definitions 0●0000	The tangent space	Semidifferentials	Viscosity solutions	Main result
Viscosity solut	ions			
In \mathbb{R}^d , viscosity so	plutions of $H(x, \nabla_x u) =$	= 0 are equivalently defined to the second secon	fined using	
 smooth test 	functions:	 sub and s 	superdifferentials:	

u is a supersolution if it is l.s.c, satisfies $u \ge \mathfrak{J}$, and if whenever $\varphi \in \mathcal{C}^1$ is such that $u - \varphi$ reaches a minimum at x,

there holds $H(x, \nabla \varphi(x)) \ge 0$.

u is a supersolution if it is l.s.c, satisfies $u \ge \mathfrak{J}$, and if whenever a vector v belongs to the subdifferential of u at x,

there holds $H(x,v) \ge 0$.

Both are linked by $\nabla \varphi(x) = v$. Extension to viscosity in measure spaces?

Definitions 00●000	The tangent space	Semidifferentials	Viscosity solutions	Main result
Notations				
		- d . e		

Let μ, ν be two probability measures on \mathbb{R}^d . If $f : \mathbb{R}^d \to Y$ is measurable, the pushforward $f \# \mu$ is a measure on Y given by $(f \# \mu)(A) = \mu(f^{-1}(A))$ for any measurable $A \subset Y$.

Definitions 00●000	The tangent space	Semidifferentials	Viscosity solutions	Main result
Notations				

Let μ, ν be two probability measures on \mathbb{R}^d . If $f : \mathbb{R}^d \to Y$ is measurable, the pushforward $f \# \mu$ is a measure on Y given by $(f \# \mu)(A) = \mu(f^{-1}(A))$ for any measurable $A \subset Y$. Denote

$$\Gamma(\mu,\nu) \coloneqq \left\{ \eta = \eta(x,y) \in \mathscr{P}_2(\mathbb{R}^d \times \mathbb{R}^d) \mid \pi_x \# \eta = \mu, \ \pi_y \# \eta = \nu \right\}.$$

the possible transport plans between μ and ν . The 2-Wasserstein distance is defined as

$$d_{\mathcal{W}}^2(\mu,\nu) \coloneqq \inf_{\eta \in \Gamma(\mu,\nu)} \int_{(x,y) \in (\mathbb{R}^d)^2} |x-y|^2 \, d\eta(x,y).$$

NOLATIONS

Definitions 00●000	The tangent space	Semidifferentials	Viscosity solutions	Main result
Notations				

Let μ, ν be two probability measures on \mathbb{R}^d . If $f : \mathbb{R}^d \to Y$ is measurable, the pushforward $f \# \mu$ is a measure on Y given by $(f \# \mu)(A) = \mu(f^{-1}(A))$ for any measurable $A \subset Y$. Denote

$$\Gamma(\mu,\nu) \coloneqq \left\{ \eta = \eta(x,y) \in \mathscr{P}_2(\mathbb{R}^d \times \mathbb{R}^d) \mid \pi_x \# \eta = \mu, \ \pi_y \# \eta = \nu \right\}.$$

the possible transport plans between μ and ν . The 2-Wasserstein distance is defined as

$$d_{\mathcal{W}}^2(\mu,\nu) \coloneqq \inf_{\eta \in \Gamma(\mu,\nu)} \int_{(x,y) \in (\mathbb{R}^d)^2} |x-y|^2 \, d\eta(x,y).$$

Def – Wasserstein space The Wasserstein space $\mathscr{P}_2(\mathbb{R}^d)$ is the set of measures μ such that $d^2_{\mathcal{W}}(\mu, \delta_0)$ is finite, endowed with the Wasserstein distance.

NOLATIONS

Definitions 000●00	The tangent space	Semidifferentials 000000	Viscosity solutions	Main result
Viscosity s	solutions in $\mathscr{P}_2(\mathbb{R}^d)$			

• Represent any $\mu \in \mathscr{P}_2(\mathbb{R}^d)$ as the law of a set of random variables $X \in L^2_{\mathbb{P}}(E, \mathcal{E}; \mathbb{R}^d)$, that is, $\mu = X \# \mathbb{P}$. Then any function $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ can be *lifted* in

 $U: L^2_{\mathbb{P}}(E, \mathcal{E}; \mathbb{R}^d), \qquad U(X) \coloneqq u(X \# \mathbb{P}).$

• Represent any $\mu \in \mathscr{P}_2(\mathbb{R}^d)$ as the law of a set of random variables $X \in L^2_{\mathbb{P}}(E, \mathcal{E}; \mathbb{R}^d)$, that is, $\mu = X \# \mathbb{P}$. Then any function $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ can be *lifted* in

 $U: L^2_{\mathbb{P}}(E, \mathcal{E}; \mathbb{R}^d), \qquad U(X) \coloneqq u(X \# \mathbb{P}).$

The gradient of U at X in the Hilbert space $L^2_{\mathbb{P}}(E, \mathcal{E}; \mathbb{R}^d)$ is shown to be of the form $p \circ X$ for some $p \in L^2_{\mu}(\mathbb{R}^d; \mathbb{TR}^d)$ that depends only on $\mu = X \# \mathbb{P}$.

Definitions 000●00	The tangent space	Semidifferentials	Viscosity solutions	Main result 0000
Viscosity s	solutions in $\mathscr{P}_2(\mathbb{R}^d)$			

• Represent any $\mu \in \mathscr{P}_2(\mathbb{R}^d)$ as the law of a set of random variables $X \in L^2_{\mathbb{P}}(E, \mathcal{E}; \mathbb{R}^d)$, that is, $\mu = X \# \mathbb{P}$. Then any function $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ can be *lifted* in

 $U: L^2_{\mathbb{P}}(E, \mathcal{E}; \mathbb{R}^d), \qquad U(X) \coloneqq u(X \# \mathbb{P}).$

The gradient of U at X in the Hilbert space $L^2_{\mathbb{P}}(E, \mathcal{E}; \mathbb{R}^d)$ is shown to be of the form $p \circ X$ for some $p \in L^2_{\mu}(\mathbb{R}^d; \mathbb{TR}^d)$ that depends only on $\mu = X \# \mathbb{P}$.

• Another equivalent formulation [CD18]: define first *linear derivative* along curves $h \mapsto (1-h)\mu + h\nu$, then *functional derivative* as the gradient of the linear derivative.

Definitions 000●00	The tangent space	Semidifferentials	Viscosity solutions	Main result 0000
Viscosity s	olutions in $\mathscr{P}_2(\mathbb{R}^d)$			

• Represent any $\mu \in \mathscr{P}_2(\mathbb{R}^d)$ as the law of a set of random variables $X \in L^2_{\mathbb{P}}(E, \mathcal{E}; \mathbb{R}^d)$, that is, $\mu = X \# \mathbb{P}$. Then any function $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ can be *lifted* in

 $U: L^2_{\mathbb{P}}(E, \mathcal{E}; \mathbb{R}^d), \qquad U(X) \coloneqq u(X \# \mathbb{P}).$

The gradient of U at X in the Hilbert space $L^2_{\mathbb{P}}(E, \mathcal{E}; \mathbb{R}^d)$ is shown to be of the form $p \circ X$ for some $p \in L^2_{\mu}(\mathbb{R}^d; \mathbb{TR}^d)$ that depends only on $\mu = X \# \mathbb{P}$.

- Another equivalent formulation [CD18]: define first *linear derivative* along curves $h \mapsto (1-h)\mu + h\nu$, then *functional derivative* as the gradient of the linear derivative.
- Provides a definition of C¹ functions and higher derivatives [Sal23], used to obtain existence of "regular" solutions to mean-field games [CDLL19, CP20, MZ22] and viscosity solutions [PW18, BY19, DJS23]...

$$\mathsf{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})\coloneqq\overline{\{\nabla\varphi\mid\varphi\in\mathcal{C}^{\infty}_{c}(\mathbb{R}^{d})\}}^{L^{2}_{\mu}(\mathbb{R}^{d};\mathsf{T}\mathbb{R}^{d})}.$$

$$\mathsf{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}) \coloneqq \overline{\{\nabla \varphi \mid \varphi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{d})\}}^{L^{2}_{\mu}(\mathbb{R}^{d};\mathsf{T}\mathbb{R}^{d})}.$$

• Possible to define sub/superdifferential and a corresponding notion of viscosity solutions [CQ08], variations in [MQ18, JMQ20, JMQ22, Jim23] with δ -differentials.

$$\mathsf{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}) \coloneqq \overline{\{\nabla \varphi \mid \varphi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{d})\}}^{L^{2}_{\mu}(\mathbb{R}^{d};\mathsf{T}\mathbb{R}^{d})}.$$

- Possible to define sub/superdifferential and a corresponding notion of viscosity solutions [CQ08], variations in [MQ18, JMQ20, JMQ22, Jim23] with δ -differentials.
- Geometric definition of the **Wasserstein gradient** as the intersection of the sub and superdifferential in [GNT08, GŚ14], shown to be equivalent to the Lions differentiability in [GT19].

$$\mathsf{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}) \coloneqq \overline{\{\nabla \varphi \mid \varphi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{d})\}}^{L^{2}_{\mu}(\mathbb{R}^{d}; \mathsf{T}\mathbb{R}^{d})}.$$

- Possible to define sub/superdifferential and a corresponding notion of viscosity solutions [CQ08], variations in [MQ18, JMQ20, JMQ22, Jim23] with δ -differentials.
- Geometric definition of the **Wasserstein gradient** as the intersection of the sub and superdifferential in [GNT08, GŚ14], shown to be equivalent to the Lions differentiability in [GT19].

Other ideas: applying metric viscosity [AF14, GŚ15], linear derivatives [FN12, BIRS19], pathwise solutions [WZ20, CGK⁺23], directional derivatives [Jer22, JPZ23].

Definitions 00000●	The tangent space	Semidifferentials 000000	Viscosity solutions	Main result 0000
Using directio	onal derivatives			

 $H: \mathbb{T} \to \mathbb{R},$

where \mathbb{T} is a set of pairs (μ, p) with $\mu \in \mathscr{P}_2(\mathbb{R}^d)$ and $p : \operatorname{Tan}_{\mu} \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$.

Definitions 00000●	The tangent space	Semidifferentials	Viscosity solutions	Main result
Using direction	onal derivatives			

$$H:\mathbb{T}\to\mathbb{R},$$

where \mathbb{T} is a set of pairs (μ, p) with $\mu \in \mathscr{P}_2(\mathbb{R}^d)$ and $p : \operatorname{Tan}_{\mu} \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$. Typically, $p : \xi \to D_{\mu} \varphi(\xi)$ for some $\varphi : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$, the application of directional derivatives. For instance,

$$H(\mu,p) \coloneqq \sup_{u \in U} -p\left(f(\mu,u)\right), \qquad \qquad H(\mu,p) \coloneqq \sup_{\xi \in \operatorname{Tan}_{\mu}, \ \|\xi\|_{\mu} = 1} |p(\xi)|.$$

Definitions 00000●	The tangent space	Semidifferentials	Viscosity solutions	Main result
Using direct	ional derivatives			

$$H:\mathbb{T}\to\mathbb{R},$$

where \mathbb{T} is a set of pairs (μ, p) with $\mu \in \mathscr{P}_2(\mathbb{R}^d)$ and $p : \operatorname{Tan}_{\mu} \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$. Typically, $p : \xi \to D_{\mu} \varphi(\xi)$ for some $\varphi : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$, the application of directional derivatives. For instance,

$$H(\mu,p) \coloneqq \sup_{u \in U} -p\left(f(\mu,u)\right), \qquad \qquad H(\mu,p) \coloneqq \sup_{\xi \in \operatorname{Tan}_{\mu}, \ \|\xi\|_{\mu} = 1} |p(\xi)|.$$

• Line opened in [JJZ], developped in [Jer22, JPZ23].

Definitions 00000●	The tangent space	Semidifferentials	Viscosity solutions	Main result 0000
Using direction	nal derivatives			

$$H:\mathbb{T}\to\mathbb{R},$$

where \mathbb{T} is a set of pairs (μ, p) with $\mu \in \mathscr{P}_2(\mathbb{R}^d)$ and $p : \operatorname{Tan}_{\mu} \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$. Typically, $p : \xi \to D_{\mu} \varphi(\xi)$ for some $\varphi : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$, the application of directional derivatives. For instance,

$$H(\mu,p) \coloneqq \sup_{u \in U} -p\left(f(\mu,u)\right), \qquad \qquad H(\mu,p) \coloneqq \sup_{\xi \in \operatorname{Tan}_{\mu}, \ \|\xi\|_{\mu} = 1} |p(\xi)|.$$

- Line opened in [JJZ], developped in [Jer22, JPZ23].
- 😮 Is it possible to reformulate using semidifferentials? 🚱

Definitions	The tangent space	Semidifferentials	Viscosity solutions	Main result
000000	●000000	000000		0000
Table of Cor	itents			

First definitions

Geometric tangent space

Generalized sub and superdifferentials

Definitions of viscosity solutions

The equivalence result

Definitions 000000	The tangent space 0●00000	Semidifferentials	Viscosity solutions	Main result
Velocities				

Let $T\mathbb{R}^d \coloneqq \bigcup_{x \in \mathbb{R}^d} \{x\} \times T_x \mathbb{R}^d$ be the tangent bundle, endowed with $|(x, v)|^2 \coloneqq |x|^2 + |v|^2$.

Definitions 000000	The tangent space 0●00000	Semidifferentials	Viscosity solutions	Main result 0000
Velocities				

 $\lambda \cdot \xi \coloneqq (\pi_x, \lambda \pi_v) \# \xi \qquad (\text{rescaling}),$

Definitions 000000	The tangent space ○●○○○○○	Semidifferentials	Viscosity solutions	Main result 0000
Valocities				

 $\lambda \cdot \xi \coloneqq (\pi_x, \lambda \pi_v) \# \xi \qquad (\text{rescaling}),$

velocities

Definitions 000000	The tangent space 0●00000	Semidifferentials	Viscosity solutions	Main result 0000
Velocities				

 $\lambda \cdot \xi \coloneqq (\pi_x, \lambda \pi_v) \# \xi \qquad (\text{rescaling}), \qquad \exp_\mu (h \cdot \xi) \coloneqq (\pi_x + h \pi_v) \# \xi \qquad (\text{exponential}).$

Definitions 000000	The tangent space 0●00000	Semidifferentials	Viscosity solutions	Main result 0000
Velocities				

 $\lambda \cdot \xi \coloneqq (\pi_x, \lambda \pi_v) \# \xi \qquad (\text{rescaling}), \qquad \exp_\mu (h \cdot \xi) \coloneqq (\pi_x + h \pi_v) \# \xi \qquad (\text{exponential}).$

Definitions 000000	The tangent space 0●00000	Semidifferentials	Viscosity solutions	Main result 0000
Velocities				

 $\lambda \cdot \xi \coloneqq (\pi_x, \lambda \pi_v) \# \xi$ (rescaling), $\exp_\mu(h \cdot \xi) \coloneqq (\pi_x + h \pi_v) \# \xi$ (exponential).

Definitions 000000	The tangent space 0●00000	Semidifferentials	Viscosity solutions	Main result 0000
Velocities				

 $\lambda \cdot \xi \coloneqq (\pi_x, \lambda \pi_v) \# \xi \qquad (\text{rescaling}), \qquad \exp_\mu (h \cdot \xi) \coloneqq (\pi_x + h \pi_v) \# \xi \qquad (\text{exponential}).$

Definitions 000000	The tangent space 0●00000	Semidifferentials	Viscosity solutions	Main result
Velocities				

 $\lambda \cdot \xi \coloneqq (\pi_x, \lambda \pi_v) \# \xi \qquad (\text{rescaling}), \qquad \exp_\mu (h \cdot \xi) \coloneqq (\pi_x + h \pi_v) \# \xi \qquad (\text{exponential}).$

Definitions 000000	The tangent space 0●00000	Semidifferentials	Viscosity solutions	Main result

 $\lambda \cdot \xi \coloneqq (\pi_x, \lambda \pi_v) \# \xi \qquad (\text{rescaling}), \qquad \exp_\mu (h \cdot \xi) \coloneqq (\pi_x + h \pi_v) \# \xi \qquad (\text{exponential}).$

velocities
Definitions 000000	The tangent space 0●00000	Semidifferentials	Viscosity solutions	Main result
$\Delta f_{\rm e} = 1 + 1 + 1 + 1$				

Let $T\mathbb{R}^d := \bigcup_{x \in \mathbb{R}^d} \{x\} \times T_x \mathbb{R}^d$ be the tangent bundle, endowed with $|(x, v)|^2 := |x|^2 + |v|^2$. The set $\mathscr{P}_2(T\mathbb{R}^d)$ may be endowed with various operations:

 $\lambda \cdot \xi \coloneqq (\pi_x, \lambda \pi_v) \# \xi$ (rescaling), $\exp_\mu(h \cdot \xi) \coloneqq (\pi_x + h \pi_v) \# \xi$ (exponential).

Consider the following specific class of transport plans:

$$\Gamma_{\mu}(\xi,\zeta) \coloneqq \bigg\{ \eta \in \mathscr{P}_2\bigg(\bigcup_{x \in \mathbb{R}^d} \{x\} \times \mathsf{T}_x \mathbb{R}^d \times \mathsf{T}_x \mathbb{R}^d\bigg) \quad \bigg| \quad (\pi_x, \pi_v) \# \eta = \xi, \ (\pi_x, \pi_w) \# \eta = \zeta \bigg\}.$$

velocities

Definitions 000000	The tangent space 0●00000	Semidifferentials	Viscosity solutions	Main result
Velocities				

Let $T\mathbb{R}^d := \bigcup_{x \in \mathbb{R}^d} \{x\} \times T_x \mathbb{R}^d$ be the tangent bundle, endowed with $|(x, v)|^2 := |x|^2 + |v|^2$. The set $\mathscr{P}_2(T\mathbb{R}^d)$ may be endowed with various operations:

 $\lambda \cdot \xi \coloneqq (\pi_x, \lambda \pi_v) \# \xi$ (rescaling), $\exp_\mu(h \cdot \xi) \coloneqq (\pi_x + h \pi_v) \# \xi$ (exponential).

Consider the following specific class of transport plans:

$$\Gamma_{\mu}(\xi,\zeta) \coloneqq \bigg\{ \eta \in \mathscr{P}_2\bigg(\bigcup_{x \in \mathbb{R}^d} \{x\} \times \mathsf{T}_x \mathbb{R}^d \times \mathsf{T}_x \mathbb{R}^d\bigg) \quad \bigg| \quad (\pi_x,\pi_v) \# \eta = \xi, \ (\pi_x,\pi_w) \# \eta = \zeta \bigg\}.$$

Def Given $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$, define $W^2_{\mu}(\xi, \zeta) \coloneqq \inf_{\eta \in \Gamma_{\mu}(\xi, \zeta)} \int_{(x, v, w)} |v - w|^2 d\eta$.

Definitions 000000	The tangent space 00●0000	Semidifferentials	Viscosity solutions	Main result 0000

Let $\mu, \nu \in \mathscr{P}_2(\mathbb{R}^d)$, and denote

$$\overrightarrow{\mu\nu} \coloneqq \{(\pi_x, \pi_y - \pi_x) \# \eta \mid \eta \in \Gamma_o(\mu, \nu)\}$$

the set of velocities of geodesics $(\exp_{\mu}^{-1}(\nu))$.

Definitions 000000	The tangent space 00●0000	Semidifferentials	Viscosity solutions	Main result 0000

Let $\mu, \nu \in \mathscr{P}_2(\mathbb{R}^d)$, and denote

$$\overrightarrow{\mu\nu} \coloneqq \{(\pi_x, \pi_y - \pi_x) \# \eta \mid \eta \in \Gamma_o(\mu, \nu)\}$$

the set of velocities of geodesics $(\exp_{\mu}^{-1}(\nu))$.

Def The generalized tangent space $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$ to μ is the set

$$\overline{\left\{\lambda\cdot\overrightarrow{\mu}\overrightarrow{\nu}\mid\lambda\in\mathbb{R}^+,\ \nu\in\mathscr{P}_2(\mathbb{R}^d)\right\}}^{W_\mu}$$

Definitions 000000	The tangent space 00●0000	Semidifferentials	Viscosity solutions	Main result 0000

Let $\mu, \nu \in \mathscr{P}_2(\mathbb{R}^d)$, and denote

$$\overrightarrow{\mu\nu} \coloneqq \{(\pi_x, \pi_y - \pi_x) \# \eta \mid \eta \in \Gamma_o(\mu, \nu)\}$$

the set of velocities of geodesics $(\exp_{\mu}^{-1}(\nu))$.

Def The generalized tangent space $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$ to μ is the set

$$\overline{\{\lambda\cdot \overrightarrow{\mu
u}\mid \lambda\in \mathbb{R}^+, \
u\in \mathscr{P}_2(\mathbb{R}^d)\}}^{W_\mu}$$

The set Tan_{μ} is stable by scaling by a real factor and enjoys a well-defined projection π^{μ} .

Definitions 000000	The tangent space 00●0000	Semidifferentials	Viscosity solutions	Main result

Let $\mu, \nu \in \mathscr{P}_2(\mathbb{R}^d)$, and denote

$$\overrightarrow{\mu\nu} \coloneqq \{(\pi_x, \pi_y - \pi_x) \# \eta \mid \eta \in \Gamma_o(\mu, \nu)\}$$

the set of velocities of geodesics $(\exp_{\mu}^{-1}(\nu))$.

Def The generalized tangent space $\mathrm{Tan}_{\mu}\mathscr{P}_2(\mathbb{R}^d)$ to μ is the set

$$\overline{\{\lambda\cdot \overrightarrow{\mu\nu}\mid \lambda\in \mathbb{R}^+,\ \nu\in \mathscr{P}_2(\mathbb{R}^d)\}}^{W_\mu}$$

The set Tan_{μ} is stable by scaling by a real factor and enjoys a well-defined projection π^{μ} .

Definitions 000000	The tangent space 000●000	Semidifferentials	Viscosity solutions	Main result 0000

Convexity property

Def – Horizontal interpolation Let $\xi_0, \xi_1 \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}, \beta \in \Gamma_{\mu}(\xi_0, \xi_1)$ and $t \in [0, 1]$. Then

$$\xi_t^{\beta} \coloneqq (\pi_x, (1-t)\pi_v + t\pi_w) \# \beta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}.$$

Definitions 000000	The tangent space 000●000	Semidifferentials	Viscosity solutions	Main result

Convexity property

Def – Horizontal interpolation Let $\xi_0, \xi_1 \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_\mu, \beta \in \Gamma_\mu(\xi_0, \xi_1)$ and $t \in [0, 1]$. Then

$$\xi_t^{\beta} \coloneqq (\pi_x, (1-t)\pi_v + t\pi_w) \# \beta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}.$$

By [Gig08], the set $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$ is horizontally convex.

Definitions 000000	The tangent space 000●000	Semidifferentials	Viscosity solutions	Main result 0000

Convexity property

Def – Horizontal interpolation Let $\xi_0, \xi_1 \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_\mu$, $\beta \in \Gamma_\mu(\xi_0, \xi_1)$ and $t \in [0, 1]$. Then

$$\xi_t^{\beta} \coloneqq (\pi_x, (1-t)\pi_v + t\pi_w) \# \beta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}.$$

By [Gig08], the set $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$ is horizontally convex.

Def 1 If $A \subset \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}$, define $\overline{\mathsf{conv}}A$ as the smallest horizontally convex that is closed with respect to W_{μ} and contains A.

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result 0000
Barycenter				

Notice that $\overline{\operatorname{conv}}{\xi} \neq \xi$ in general!

Definitions 000000	The tangent space 0000●00	Semidifferentials	Viscosity solutions	Main result

Notice that $\overline{\text{conv}}{\xi} \neq \xi$ in general!

Proposition – Barycenter Let $\xi \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$, and Bary $(\xi) \in L^2_\mu(\mathbb{R}^d; \mathsf{T}\mathbb{R}^d)$ its barycenter, given by Bary $(\xi)(x) = \int_{v \in \mathsf{T}_x \mathbb{R}^d} v d\xi_x(v)$.

Then

Bary $(\xi) \# \mu \in \overline{\operatorname{conv}} \{\xi\}.$

Definitions 000000	The tangent space 0000●00	Semidifferentials	Viscosity solutions	Main result

Notice that $\overline{\text{conv}}{\xi} \neq \xi$ in general!

Proposition – Barycenter Let $\xi \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$, and Bary $(\xi) \in L^2_\mu(\mathbb{R}^d; \mathsf{T}\mathbb{R}^d)$ its barycenter, given by Bary $(\xi)(x) = \int_{v \in \mathsf{T}_x \mathbb{R}^d} v d\xi_x(v)$. Then

Bary $(\xi) \# \mu \in \overline{\operatorname{conv}} \{\xi\}.$

Definitions 000000	The tangent space 0000●00	Semidifferentials	Viscosity solutions	Main result

Notice that $\overline{\text{conv}}{\xi} \neq \xi$ in general!

Proposition – Barycenter Let $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$, and Bary $(\xi) \in L^2_{\mu}(\mathbb{R}^d; \mathbb{T}\mathbb{R}^d)$ its barycenter, given by Bary $(\xi)(x) = \int_{v \in \mathbb{T}_x \mathbb{R}^d} v d\xi_x(v)$. Then

Bary
$$(\xi) \# \mu \in \overline{\operatorname{conv}} \{\xi\}.$$

Definitions 000000	The tangent space 0000●00	Semidifferentials	Viscosity solutions	Main result

Notice that $\overline{\text{conv}}{\xi} \neq \xi$ in general!

Proposition – Barycenter Let $\xi \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$, and Bary $(\xi) \in L^2_\mu(\mathbb{R}^d; \mathsf{T}\mathbb{R}^d)$ its barycenter, given by Bary $(\xi)(x) = \int_{v \in \mathsf{T}_x \mathbb{R}^d} v d\xi_x(v)$. Then

Bary
$$(\xi) \# \mu \in \overline{\operatorname{conv}} \{\xi\}.$$

Definitions 000000	The tangent space 00000●0	Semidifferentials	Viscosity solutions	Main result

Directional derivatives

For an application $\varphi:\mathscr{P}_2(\mathsf{T}\mathbb{R}^d)\to\mathbb{R},$ we denote

$$D_{\mu} arphi : \operatorname{\mathsf{Tan}}_{\mu} \mathscr{P}_{2}(\mathbb{R}^{d}) o \mathbb{R}, \qquad D_{\mu} arphi(\xi) \coloneqq \lim_{h \searrow 0} rac{arphi\left(\exp_{\mu}(h \cdot \xi)
ight) - arphi(\mu)}{h}.$$

Definitions 000000	The tangent space 00000●0	Semidifferentials	Viscosity solutions	Main result

Directional derivatives

For an application $\varphi:\mathscr{P}_2(\mathsf{T}\mathbb{R}^d)\to\mathbb{R},$ we denote

$$D_{\mu}\varphi: \operatorname{\mathsf{Tan}}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}) \to \mathbb{R}, \qquad D_{\mu}\varphi(\xi) \coloneqq \lim_{h \searrow 0} \frac{\varphi\left(\exp_{\mu}(h \cdot \xi)\right) - \varphi(\mu)}{h}.$$

Def – Metric cotangent bundle Let

$$\mathbb{T}_{\mu} \coloneqq \left\{ p : \operatorname{Tan}_{\mu} \mathscr{P}_{2}(\mathbb{R}^{d}) \to \mathbb{R} \middle| \begin{array}{l} p \text{ is positively homogeneous and} \\ \operatorname{Lipschitz-continuous w.r.t.} W_{\mu}. \end{array} \right\}$$

Denote $\mathbb{T} \coloneqq \bigcup_{\mu \in \mathscr{P}_2(\mathbb{R}^d)} \{\mu\} \times \mathbb{T}_{\mu}.$

Definitions 000000	The tangent space 000000●	Semidifferentials	Viscosity solutions	Main result
Precise de	efinition of the Hamil	tonian		

The Hamiltonian is defined as an application

 $H:\mathbb{T}\to\mathbb{R}.$

Definitions 000000	The tangent space 000000●	Semidifferentials	Viscosity solutions	Main result 0000

The Hamiltonian is defined as an application

$$H:\mathbb{T}\to\mathbb{R}.$$

For instance,

$$H(\mu, p) \coloneqq \sup_{u \in U} -p(\pi^{\mu} f(\mu, u)).$$

Definitions 000000	The tangent space 000000●	Semidifferentials	Viscosity solutions	Main result

The Hamiltonian is defined as an application

$$H:\mathbb{T}\to\mathbb{R}.$$

For instance,

$$H(\mu, p) \coloneqq \sup_{u \in U} -p(\pi^{\mu} f(\mu, u)).$$

If $\varphi : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is directionally differentiable and locally Lipschitz-continuous, then $D_\mu \varphi \in \mathbb{T}_\mu$. This gives meaning to

$$H\left(\mu, D_{\mu}\varphi\right) = 0.$$

Definitions 000000	The tangent space 000000●	Semidifferentials	Viscosity solutions	Main result

The Hamiltonian is defined as an application

$$H:\mathbb{T}\to\mathbb{R}.$$

For instance,

$$H(\mu, p) \coloneqq \sup_{u \in U} -p(\pi^{\mu} f(\mu, u)).$$

If $\varphi : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is directionally differentiable and locally Lipschitz-continuous, then $D_\mu \varphi \in \mathbb{T}_\mu$. This gives meaning to

$$H\left(\mu, D_{\mu}\varphi\right) = 0.$$

• Give a notion of viscosity solutions using the semidifferentials of [AF14].

Definitions 000000	The tangent space 000000●	Semidifferentials	Viscosity solutions	Main result

The Hamiltonian is defined as an application

$$H:\mathbb{T}\to\mathbb{R}.$$

For instance,

$$H(\mu, p) \coloneqq \sup_{u \in U} -p(\pi^{\mu} f(\mu, u)).$$

If $\varphi : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is directionally differentiable and locally Lipschitz-continuous, then $D_\mu \varphi \in \mathbb{T}_\mu$. This gives meaning to

$$H\left(\mu, D_{\mu}\varphi\right) = 0.$$

- Give a notion of viscosity solutions using the semidifferentials of [AF14].
- Compare it with a notion of viscosity solutions using test functions.

Definitions 000000	The tangent space	Semidifferentials ●00000	Viscosity solutions	Main result 0000
Table of (ontents			

First definitions

Geometric tangent space

Generalized sub and superdifferentials

- Definitions of viscosity solutions
- The equivalence result

Definitions 000000	The tangent space	Semidifferentials ○●○○○○	Viscosity solutions	Main result 0000
Pseudo scalar	products			

Denote $0_{\mu} \coloneqq (\pi_x, 0) \# \mu$ and $\|\xi\|_{\mu} \coloneqq W_{\mu}(\xi, 0_{\mu})$.

 $\mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_\mu$ is the set of probabilities on $\mathbb{T}\mathbb{R}^d$ with base μ , over which $W_\mu(\cdot, \cdot)$ is a distance.

Averil Prost

Test functions vs semidifferentials in Wasserstein

Definitions 000000	The tangent space	Semidifferentials ○●○○○○	Viscosity solutions	Main result

Pseudo scalar products

Denote $0_{\mu} \coloneqq (\pi_x, 0) \# \mu$ and $\|\xi\|_{\mu} \coloneqq W_{\mu}(\xi, 0_{\mu})$.

Def Given $\xi, \zeta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$, define

$$\{\xi,\zeta\}^+_{\mu} \coloneqq rac{1}{2} \left[\|\xi\|^2_{\mu} + \|\zeta\|^2_{\mu} - W^2_{\mu}(\xi,\zeta)
ight].$$

To ease notations, we also denote $\langle \xi, \zeta \rangle_{\mu}^{-} \coloneqq - \langle -\xi, \zeta \rangle_{\mu}^{+}$.

 $\mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ is the set of probabilities on $\mathsf{T}\mathbb{R}^d$ with base μ , over which $W_\mu(\cdot, \cdot)$ is a distance.

Averil Prost

Test functions vs semidifferentials in Wasserstein

Definitions 000000	The tangent space	Semidifferentials ○●○○○○	Viscosity solutions	Main result

Pseudo scalar products

Denote $0_{\mu} \coloneqq (\pi_x, 0) \# \mu$ and $\|\xi\|_{\mu} \coloneqq W_{\mu}(\xi, 0_{\mu})$.

Def Given $\xi, \zeta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$, define

$$\{\xi,\zeta\}^+_{\mu} \coloneqq \frac{1}{2} \left[\|\xi\|^2_{\mu} + \|\zeta\|^2_{\mu} - W^2_{\mu}(\xi,\zeta) \right].$$

To ease notations, we also denote $\langle \xi, \zeta \rangle_{\mu}^{-} \coloneqq - \langle -\xi, \zeta \rangle_{\mu}^{+}$.

Expanding the definition of W_{μ} yields

$$\langle \xi, \zeta \rangle^+_\mu = \sup_{\eta \in \Gamma_\mu(\xi, \zeta)} \int_{(x, v, w)} \langle v, w \rangle \, d\eta, \qquad \text{and} \qquad \langle \xi, \zeta \rangle^-_\mu = \inf_{\eta \in \Gamma_\mu(\xi, \zeta)} \int_{(x, v, w)} \langle v, w \rangle \, d\eta.$$

 $\mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ is the set of probabilities on $\mathsf{T}\mathbb{R}^d$ with base μ , over which $W_\mu(\cdot, \cdot)$ is a distance.

Averil Prost

Test functions vs semidifferentials in Wasserstein

Definitions 000000	The tangent space	Semidifferentials 00●000	Viscosity solutions	Main result
Properties of ($\langle \cdot, \cdot angle_{\mu}^{\pm}$			

If $\xi = f \# \mu$ and $\zeta = g \# \mu$ for some $f, g \in L^2_{\mu}(\mathbb{R}^d; \mathbb{T}\mathbb{R}^d)$, then

$$\left\langle \xi,\zeta\right\rangle _{\mu}^{\pm}=\int_{x\in\mathbb{R}^{d}}\int_{x\in\mathbb{R}^{d}}\left\langle f(x),g(x)\right\rangle d\mu(x)=\left\langle f,g\right\rangle _{L_{\mu}^{2}}.$$

Definitions 000000	The tangent space	Semidifferentials 00●000	Viscosity solutions	Main result
Properties of ($\langle \cdot, \cdot angle_{\mu}^{\pm}$			

If $\xi = f \# \mu$ and $\zeta = g \# \mu$ for some $f, g \in L^2_\mu(\mathbb{R}^d; \mathbb{T}\mathbb{R}^d)$, then

$$\langle \xi, \zeta \rangle^{\pm}_{\mu} = \int_{x \in \mathbb{R}^d} \int_{x \in \mathbb{R}^d} \left\langle f(x), g(x) \right\rangle d\mu(x) = \langle f, g \rangle_{L^2_{\mu}} \,.$$

There always holds $\langle \xi, \xi \rangle^+_\mu = \|\xi\|^2_\mu$. However,

$$\langle \xi, \xi
angle_{\mu}^{-} = \| \xi \|_{\mu}^{2} \qquad \iff \qquad \exists f \in L^{2}_{\mu}(\mathbb{R}^{d}; \mathsf{T}\mathbb{R}^{d}) \quad \mathsf{such that} \quad \xi = f \# \mu.$$

Definitions 000000	The tangent space	Semidifferentials 00●000	Viscosity solutions	Main result
Properties of <	$\langle \cdot, \cdot angle_{\mu}^{\pm}$			

If $\xi = f \# \mu$ and $\zeta = g \# \mu$ for some $f, g \in L^2_\mu(\mathbb{R}^d; \mathbb{T}\mathbb{R}^d)$, then

$$\langle \xi, \zeta \rangle^{\pm}_{\mu} = \int_{x \in \mathbb{R}^d} \int_{x \in \mathbb{R}^d} \left\langle f(x), g(x) \right\rangle d\mu(x) = \langle f, g \rangle_{L^2_{\mu}} \,.$$

There always holds $\langle \xi, \xi \rangle^+_\mu = \|\xi\|^2_\mu$. However,

$$\langle \xi,\xi
angle_{\mu}^{-}=\|\xi\|_{\mu}^{2}\qquad\iff\qquad \exists f\in L^{2}_{\mu}(\mathbb{R}^{d};\mathsf{T}\mathbb{R}^{d}) \ \ ext{such that} \ \ \xi=f\#\mu.$$

For instance, if
$$\xi = \frac{1}{2}\delta_{(0,v_0)} + \frac{1}{2}\delta_{(0,v_1)}$$
, then $\beta \coloneqq \frac{1}{2}\delta_{(0,v_0,v_1)} + \frac{1}{2}\delta_{(0,v_1,v_0)}$ yields

$$\langle \xi, \xi \rangle_{\mu}^{-} \leqslant \frac{1}{2} \langle v_{0}, v_{1} \rangle + \frac{1}{2} \langle v_{1}, v_{0} \rangle = -1 = -\|\xi\|_{\mu}^{2}. \qquad v_{0} \checkmark v_{1}$$

Definitions 000000	The tangent space	Semidifferentials 000●00	Viscosity solutions	Main result
_				

Convexity properties

Definitions 000000	The tangent space	Semidifferentials 000●00	Viscosity solutions	Main result

Convexity properties

Definitions 000000	The tangent space	Semidifferentials 000●00	Viscosity solutions	Main result

Convexity properties

Proposition 1 Let $\xi_0, \ \xi_1 \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_\mu$ and $\beta \in \Gamma_\mu(\xi_0, \xi_1)$. Then for any $\zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_\mu$, $[0,1]: t \mapsto \langle \zeta, \xi_t^\beta \rangle_\mu^+$ is convex, $[0,1]: t \mapsto \langle \zeta, \xi_t^\beta \rangle_\mu^-$ is concave.

Let $A, B \subset \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ be nonempty, horizontally convex and bounded sets, with A compact w.r.t. the topology induced by W_{μ} . Then

$$\sup_{\alpha \in A} \inf_{\beta \in B} \langle \alpha, \beta \rangle_{\mu}^{\pm} = \inf_{\beta \in B} \sup_{\alpha \in A} \langle \alpha, \beta \rangle_{\mu}^{\pm}.$$

Definitions 000000	The tangent s	space	Semidifferentials 0000●0	Viscosity solutions	Main result
		1.00			

Fréchet sub and superdifferentials [AF14, Definition 4.7]

Def – **Superdifferential** Let $\varphi : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$. An element $\xi \in \operatorname{Tan}_{\mu} \mathscr{P}_2(\mathbb{R}^d)$ belongs to the superdifferential of φ at μ , denoted $\partial_{\mu}^+ \varphi$, if for all $\nu \in \mathscr{P}_2(\mathbb{R}^d)$,

$$\varphi(\nu) - \varphi(\mu) \leq \inf_{\eta \in \overrightarrow{\mu\nu}} \langle \xi, \eta \rangle_{\mu}^{-} + o\left(d_{\mathcal{W}}(\mu, \nu) \right).$$

Definitions 000000	The tangent space	Semidifferentials 0000●0	Viscosity solutions	Main result

Fréchet sub and superdifferentials [AF14, Definition 4.7]

Def – **Superdifferential** Let $\varphi : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$. An element $\xi \in \operatorname{Tan}_{\mu} \mathscr{P}_2(\mathbb{R}^d)$ belongs to the superdifferential of φ at μ , denoted $\partial_{\mu}^+ \varphi$, if for all $\nu \in \mathscr{P}_2(\mathbb{R}^d)$,

$$\varphi(\nu) - \varphi(\mu) \leq \inf_{\eta \in \overline{\mu} \overline{\nu}} \langle \xi, \eta \rangle_{\mu}^{-} + o(d_{\mathcal{W}}(\mu, \nu)).$$

Def – **Subdifferential** Let $\varphi : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$. An element $\xi \in \operatorname{Tan}_{\mu} \mathscr{P}_2(\mathbb{R}^d)$ belongs to the subdifferential of φ at μ , denoted $\partial_{\mu}^- \varphi$, if for all $\nu \in \mathscr{P}_2(\mathbb{R}^d)$,

$$\varphi(\nu) - \varphi(\mu) \ge \sup_{\eta \in \overline{\mu\nu}} \langle \xi, \eta \rangle_{\mu}^{+} + o\left(d_{\mathcal{W}}(\mu, \nu)\right).$$

Definitions 000000	The tangent space	Semidifferentials 00000●	Viscosity solutions	Main result
Example				

Given $A \subset \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$, let again $\overline{\mathrm{conv}}A$ be the smallest closed set B containing A such that

 $\forall \xi_0, \xi_1 \in B, \qquad \forall \beta \in \Gamma_\mu(\xi_0, \xi_1), \qquad \forall t \in [0, 1], \qquad \xi_t^\beta = (\pi_x, (1-t)\pi_v + t\pi_w) \# \beta \in B.$

Definitions 000000	The tangent space	Semidifferentials 00000●	Viscosity solutions	Main result
Example				

Given $A \subset \mathscr{P}_2(\mathbb{TR}^d)_{\mu}$, let again $\overline{\operatorname{conv}}A$ be the smallest closed set B containing A such that

 $\forall \xi_0, \xi_1 \in B, \qquad \forall \beta \in \Gamma_\mu(\xi_0, \xi_1), \qquad \forall t \in [0, 1], \qquad \xi_t^\beta = (\pi_x, (1-t)\pi_v + t\pi_w) \# \beta \in B.$

Proposition 2 Let $\varphi : \mu \mapsto d^2_{\mathcal{W}}(\mu, \sigma)$ for some fixed $\sigma \in \mathscr{P}_2(\mathbb{R}^d)$. The superdifferential of φ is everywhere nonempty and given by

$$\partial_{\mu}^{+}\varphi = \overline{\operatorname{conv}}\left\{-2 \cdot \xi \mid \xi \in \overrightarrow{\mu \sigma}\right\}.$$

For reference, the gradient of $x \mapsto |x - y|^2$ at x is 2(x - y) = -2(y - x).

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions ●000	Main result 0000
Table of Cont	ents			

First definitions

- Geometric tangent space
- Generalized sub and superdifferentials
- Definitions of viscosity solutions
- The equivalence result
| Definitions
000000 | The tangent space | Semidifferentials
000000 | Viscosity solutions
○●○○ | Main result |
|-----------------------|-------------------|-----------------------------|-----------------------------|-------------|
| | | | | |

Def – Test functions For any $\mu \in \Omega \subset \mathscr{P}_2(\mathbb{R}^d)$, define

 $\mathscr{T}_{+,\mu} \coloneqq \left\{ \varphi : \Omega \to \mathbb{R} \; \middle| \; \begin{array}{l} \varphi \text{ is lower semicontinuous, directionally differentiable at } \mu, \\ \partial_{\mu}^{+}\varphi \text{ is nonempy, bounded and } D_{\mu}\varphi(\mu)(\cdot) = \inf_{\zeta \in \partial_{\mu}^{+}\varphi} \left\langle \cdot, \zeta \right\rangle_{\mu}^{-}. \end{array} \right\}.$

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions 0000	Main result

Def – Test functions For any $\mu \in \Omega \subset \mathscr{P}_2(\mathbb{R}^d)$, define

 $\mathcal{T}_{+,\mu} \coloneqq \left\{ \varphi : \Omega \to \mathbb{R} \mid \begin{array}{l} \varphi \text{ is lower semicontinuous, directionally differentiable at } \mu, \\ \partial_{\mu}^{+}\varphi \text{ is nonempy, bounded and } D_{\mu}\varphi(\mu)(\cdot) = \inf_{\zeta \in \partial_{\mu}^{+}\varphi} \langle \cdot, \zeta \rangle_{\mu}^{-}. \end{array} \right\}.$ Similarly, $\mathcal{T}_{-\mu} \coloneqq -\mathcal{T}_{+\mu}.$

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions ○●○○	Main result 0000

Def – Test functions For any $\mu \in \Omega \subset \mathscr{P}_2(\mathbb{R}^d)$, define

$$\begin{split} \mathscr{T}_{+,\mu} \coloneqq \left\{ \varphi: \Omega \to \mathbb{R} \; \middle| \; \begin{array}{l} \varphi \text{ is lower semicontinuous, directionally differentiable at } \mu, \\ \partial_{\mu}^{+}\varphi \text{ is nonempy, bounded and } D_{\mu}\varphi(\mu)(\cdot) &= \inf_{\zeta \in \partial_{\mu}^{+}\varphi} \left\langle \cdot, \zeta \right\rangle_{\mu}^{-}. \end{array} \right\}. \\ \\ \text{Similarly, } \mathscr{T}_{-,\mu} \coloneqq -\mathscr{T}_{+,\mu}. \end{split}$$

• Does not appeal to the theory of Wasserstein gradient.

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions ○●○○	Main result 0000

Def – Test functions For any $\mu \in \Omega \subset \mathscr{P}_2(\mathbb{R}^d)$, define

$$\begin{split} \mathscr{T}_{+,\mu} \coloneqq \left\{ \varphi: \Omega \to \mathbb{R} \; \middle| \; \begin{array}{l} \varphi \text{ is lower semicontinuous, directionally differentiable at } \mu, \\ \partial_{\mu}^{+}\varphi \text{ is nonempy, bounded and } D_{\mu}\varphi(\mu)(\cdot) &= \inf_{\zeta \in \partial_{\mu}^{+}\varphi} \left\langle \cdot, \zeta \right\rangle_{\mu}^{-}. \end{array} \right\}. \\ \\ \text{Similarly, } \mathscr{T}_{-,\mu} \coloneqq -\mathscr{T}_{+,\mu}. \end{split}$$

- Does not appeal to the theory of Wasserstein gradient.
- Retains a link between directional derivatives and semidifferentials.

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions ○○●○	Main result
Examples o	f test functions			

Proposition 3 Let $\sigma \in \mathscr{P}_2(\mathbb{R}^d)$ be fixed. Then the function $d^2_{\mathcal{W}}(\cdot, \sigma)$ belongs to $\mathscr{T}_{+,\mu}$ for any $\mu \in \mathscr{P}_2(\mathbb{R}^d)$.

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result 0000

Examples of test functions

Proposition 3 Let $\sigma \in \mathscr{P}_2(\mathbb{R}^d)$ be fixed. Then the function $d^2_{\mathcal{W}}(\cdot, \sigma)$ belongs to $\mathscr{T}_{+,\mu}$ for any $\mu \in \mathscr{P}_2(\mathbb{R}^d)$.

From [Gig08, Proposition 4.10], there holds that

$$D_{\mu}d^{2}_{\mathcal{W}}(\cdot,\sigma)(\xi) = \inf_{\eta \in -2 \cdot \overrightarrow{\mu \sigma}} \langle \xi, \eta \rangle^{-}_{\mu}.$$

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result 0000

Examples of test functions

Proposition 3 Let $\sigma \in \mathscr{P}_2(\mathbb{R}^d)$ be fixed. Then the function $d^2_{\mathcal{W}}(\cdot, \sigma)$ belongs to $\mathscr{T}_{+,\mu}$ for any $\mu \in \mathscr{P}_2(\mathbb{R}^d)$.

From [Gig08, Proposition 4.10], there holds that

$$D_{\mu}d_{\mathcal{W}}^{2}(\cdot,\sigma)(\xi) = \inf_{\eta \in -2 \cdot \overrightarrow{\mu \sigma}} \langle \xi, \eta \rangle_{\mu}^{-} \,.$$

Proposition 4 Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$ and $\zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ be fixed. Then the function $\varphi: \nu \mapsto \inf_{\eta \in \overline{\mu} \overline{\nu}} \langle \eta, \zeta \rangle_{\mu}^-$ belongs to $\mathscr{T}_{+,\mu}$, and there holds

$$D_{\mu}\varphi(\xi) = \langle \xi, \zeta \rangle_{\mu}^{-}.$$

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions ○○○●	Main result

The notion of viscosity

Consider the HJB equation

$$H(\mu, D_{\mu}u(\mu)) = 0 \quad \mu \in \Omega, \qquad u(\mu) = \mathfrak{J}(\mu) \quad \mu \in \partial\Omega.$$
(2)

Def – Using test functions A map $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is a subsolution of (2) if it is **u.s.c**, if $u \leq \mathfrak{J}$ over $\partial\Omega$, and if for any μ and $\varphi \in \mathscr{T}_{+,\mu}$ such that $u - \varphi$ reaches a **maximum** at μ ,

$$H(\mu, D_{\mu}\varphi) \leq 0.$$

Def – Using semidifferentials A map $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is a subsolution of (2) if it is **u.s.c**, if $u \leq \mathfrak{J}$ over $\partial\Omega$, and if for any element $\xi \in \partial^+_{\mu} u$,

 $H(\mu, \langle \xi, \cdot \rangle_{\mu}^{-}) \leq 0.$

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions ○○○●	Main result

The notion of viscosity

Consider the HJB equation

$$H(\mu, D_{\mu}u(\mu)) = 0 \quad \mu \in \Omega, \qquad u(\mu) = \mathfrak{J}(\mu) \quad \mu \in \partial\Omega.$$
(2)

Def – **Using test functions** A map $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is a subsolution of (2) if it is **l.s.c**, if $u \ge \mathfrak{J}$ over $\partial\Omega$, and if for any μ and $\varphi \in \mathscr{T}_{-,\mu}$ such that $u - \varphi$ reaches a **minimum** at μ ,

$$H(\mu, D_{\mu}\varphi) \ge 0.$$

Def – **Using semidifferentials** A map $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is a subsolution of (2) if it is **l.s.c**, if $u \ge \mathfrak{J}$ over $\partial\Omega$, and if for any element $\xi \in \partial_{\mu} u$,

$$H(\mu, \langle \xi, \cdot \rangle_{\mu}^{+}) \ge 0.$$

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result ●000
Table of Co	ntents			

First definitions

- Geometric tangent space
- Generalized sub and superdifferentials
- Definitions of viscosity solutions

The equivalence result

Definitions 000000	The tangent space	Semidifferentials 000000	Viscosity solutions	Main result 0●00
C				

Assume that $H:\mathbb{T}\to\mathbb{R}$ satisfies

$$\begin{aligned} \forall \varphi \in \mathscr{T}_{+,\mu}, \qquad H\left(\mu, D_{\mu}\varphi\right) &\leq \sup_{\xi \in \partial_{\mu}^{+}\varphi} H\left(\mu, \langle \xi, \cdot \rangle_{\mu}^{-}\right), \\ \forall \varphi \in \mathscr{T}_{-,\mu}, \qquad H\left(\mu, D_{\mu}\varphi\right) &\geq \inf_{\xi \in \partial_{\mu}^{-}\varphi} H\left(\mu, \langle \xi, \cdot \rangle_{\mu}^{+}\right). \end{aligned}$$

(hyp-H)

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result 0●00

Assume that $H:\mathbb{T}\to\mathbb{R}$ satisfies

$$\begin{aligned} \forall \varphi \in \mathscr{T}_{+,\mu}, & H\left(\mu, D_{\mu}\varphi\right) \leqslant \sup_{\xi \in \partial_{\mu}^{+}\varphi} H\left(\mu, \langle \xi, \cdot \rangle_{\mu}^{-}\right), \\ \forall \varphi \in \mathscr{T}_{-,\mu}, & H\left(\mu, D_{\mu}\varphi\right) \geqslant \inf_{\xi \in \partial_{\mu}^{-}\varphi} H\left(\mu, \langle \xi, \cdot \rangle_{\mu}^{+}\right). \end{aligned}$$
(hyp-H)

Theorem Assume that (hyp-H) is satisfied. Then a map $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is a viscosity subsolution (resp. supersolution) in the sense of test functions if and only if it is a viscosity subsolution (resp. supersolution) in the sense of semidifferentials.

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result 0●00

Assume that $H : \mathbb{T} \to \mathbb{R}$ satisfies

$$\begin{aligned} \forall \varphi \in \mathscr{T}_{+,\mu}, & H\left(\mu, D_{\mu}\varphi\right) \leqslant \sup_{\xi \in \partial_{\mu}^{+}\varphi} H\left(\mu, \langle \xi, \cdot \rangle_{\mu}^{-}\right), \\ \forall \varphi \in \mathscr{T}_{-,\mu}, & H\left(\mu, D_{\mu}\varphi\right) \geqslant \inf_{\xi \in \partial_{\mu}^{-}\varphi} H\left(\mu, \langle \xi, \cdot \rangle_{\mu}^{+}\right). \end{aligned}$$
(hyp-H)

Theorem Assume that (hyp-H) is satisfied. Then a map $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is a viscosity subsolution (resp. supersolution) in the sense of test functions if and only if it is a viscosity subsolution (resp. supersolution) in the sense of semidifferentials.

• Given an element $\zeta \in \partial^+_{\mu} u$, build a test function φ such that $D_{\mu} \varphi(\xi) = \langle \xi, \zeta \rangle^-_{\mu}$.

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result 0●00

Assume that $H : \mathbb{T} \to \mathbb{R}$ satisfies

$$\begin{aligned} \forall \varphi \in \mathscr{T}_{+,\mu}, & H\left(\mu, D_{\mu}\varphi\right) \leqslant \sup_{\xi \in \partial_{\mu}^{+}\varphi} H\left(\mu, \langle \xi, \cdot \rangle_{\mu}^{-}\right), \\ \forall \varphi \in \mathscr{T}_{-,\mu}, & H\left(\mu, D_{\mu}\varphi\right) \geqslant \inf_{\xi \in \partial_{\mu}^{-}\varphi} H\left(\mu, \langle \xi, \cdot \rangle_{\mu}^{+}\right). \end{aligned}$$
(hyp-H)

Theorem Assume that (hyp-H) is satisfied. Then a map $u : \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is a viscosity subsolution (resp. supersolution) in the sense of test functions if and only if it is a viscosity subsolution (resp. supersolution) in the sense of semidifferentials.

- Given an element $\zeta \in \partial_{\mu}^{+}u$, build a test function φ such that $D_{\mu}\varphi(\xi) = \langle \xi, \zeta \rangle_{\mu}^{-}$.
- Given a test function, use the representation of $D_{\mu}\varphi$ and (hyp-H).

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result 00●0
Examples of a	pplications			

• Eikonal-type Hamiltonians Let $\kappa : \mathbb{R}^+ \to \mathbb{R}^+$ be nondecreasing.

$$H:\mathbb{T}\to\mathbb{R}, \qquad \qquad H(\mu,p)\coloneqq \sup_{\xi\in \mathrm{Tan}_{\mu}\mathscr{P}_2(\mathbb{R}^d), \ \|\xi\|_{\mu}=1}\kappa\left(|p(\xi)|\right).$$

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result 00●0

Examples of applications

• Eikonal-type Hamiltonians Let $\kappa : \mathbb{R}^+ \to \mathbb{R}^+$ be nondecreasing.

$$H:\mathbb{T}\to\mathbb{R}, \qquad \qquad H(\mu,p)\coloneqq \sup_{\xi\in \mathrm{Tan}_{\mu}\mathscr{P}_2(\mathbb{R}^d), \ \|\xi\|_{\mu}=1}\kappa\left(|p(\xi)|\right).$$

• "Concave-convex" Hamiltonians Let F_1 and $F_2 : \mathscr{P}_2(\mathbb{R}^d) \rightrightarrows \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)$ be set-valued maps such that for any $\mu \in \mathscr{P}_2(\mathbb{R}^d)$ and $i \in \{1, 2\}$, $F_i[\mu]$ is a nonempty, horizontally convex and compact subset of $\operatorname{Tan}_{\mu} \mathscr{P}_2(\mathbb{R}^d)$ endowed with W_{μ} .

$$H: \mathbb{T} \to \mathbb{R}, \qquad \qquad H(\mu, p) \coloneqq \sup_{\xi_1 \in F_1[\mu]} -p(\xi_1) + \inf_{\xi_2 \in F_2[\mu]} -p(\xi_2).$$

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result 000●

Conclusion

• Possibility to use explicit test functions built from the squared Wasserstein distance or pseudo scalar products.

Conclusion

- Possibility to use explicit test functions built from the squared Wasserstein distance or pseudo scalar products.
- Equivalence between two notions of viscosity solutions under an explicit condition over the Hamiltonian.

Conclusion

- Possibility to use explicit test functions built from the squared Wasserstein distance or pseudo scalar products.
- Equivalence between two notions of viscosity solutions under an explicit condition over the Hamiltonian.

Perspectives

• Extension over $\mathscr{P}_2(\mathcal{N})$, where \mathcal{N} is not Hilbertian (network structure).

Conclusion

- Possibility to use explicit test functions built from the squared Wasserstein distance or pseudo scalar products.
- Equivalence between two notions of viscosity solutions under an explicit condition over the Hamiltonian.

Perspectives

- Extension over $\mathscr{P}_2(\mathcal{N})$, where \mathcal{N} is not Hilbertian (network structure).
- Link with Lions differentiability?

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result 0000
		Thank you!		

- [AF14] Luigi Ambrosio and Jin Feng. On a class of first order Hamilton–Jacobi equations in metric spaces. Journal of Differential Equations, 256(7):2194–2245, April 2014.
- [AGS05] Luigi Ambrosio, Nicola Gigli, and Guiseppe Savaré.
 Gradient Flows.
 Lectures in Mathematics ETH Zürich. Birkhäuser-Verlag, Basel, 2005.
- [BIRS19] Matteo Burzoni, Vicenzo Ignazio, A. Max Reppen, and H. Mete Soner. Viscosity Solutions for Controlled McKean-Vlasov Jump-Diffusions. 2019.
- [BY19] Alain Bensoussan and Sheung Chi Phillip Yam. Control problem on space of random variables and master equation. ESAIM: Control, Optimisation and Calculus of Variations, 25:10, 2019.
- [CD18] René Carmona and François Delarue. Probabilistic Theory of Mean Field Games with Applications I, volume 83 of Probability Theory and Stochastic Modelling. Springer International Publishing, 2018.

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result 0000
[CDLL19]	Pierre Cardaliaguet, François Delarue, Je <i>The Master Equation and the Converger</i> Number 201 in Annals of Mathematics S	an-Michel Lasry, and Pierre-I nce Problem in Mean Field G Studies. Princeton University	Louis Lions. <i>ames.</i> Press, Princeton, NJ, 2019.	
[CGK+23]	Andrea Cosso, Fausto Gozzi, Idris Kharro Optimal control of path-dependent McK <i>The Annals of Applied Probability</i> , 33(4)	oubi, Huyên Pham, and Maur ean–Vlasov SDEs in infinite-o):2863–2918, August 2023.	ro Rosestolato. dimension.	
[CP20]	Pierre Cardaliaguet and Alessio Porretta. An Introduction to Mean Field Game Th In <i>Mean Field Games: Cetraro, Italy 201</i> Publishing, 2020.	eory. 9, Lecture Notes in Mathema	atics, pages 1–158. Springer Int	ternational
[CQ08]	P. Cardaliaguet and M. Quincampoix. Deterministic differential games under pr International Game Theory Review, 10(0	obability knowledge of initial 1):1–16, March 2008.	condition.	

[DJS23] Samuel Daudin, Joe Jackson, and Benjamin Seeger. Well-posedness of Hamilton-Jacobi equations in the Wasserstein space: Non-convex Hamiltonians and common noise, December 2023. Preprint (arXiv:2312.02324).

Definitions	The tangent space	Semidifferentials	Viscosity solutions	Main result
[FN12]	Jin Feng and Truyen Nguyen. Hamilton–Jacobi equations in space Journal de Mathématiques Pures et	e of measures associated wit Appliquées, 97(4):318–390	h a system of conservation laws , April 2012.	5.
[Gig08]	Nicola Gigli. On the Geometry of the Space of F Distance. PhD thesis, Scuola Normale Superio	Probability Measures Endowe ore di Pisa, Pisa, 2008.	ed with the Quadratic Optimal	Transport
[GNT08]	Wilfrid Gangbo, Truyen Nguyen, an Hamilton-Jacobi Equations in the V Methods and Applications of Analy	d Adrian Tudorascu. Vasserstein Space. <i>sis</i> , 15(2):155–184, 2008.		
[GŚ14]	Wilfrid Gangbo and Andrzej Świech Optimal transport and large numbe Discrete and Continuous Dynamica	n. r of particles. <i>I Systems</i> , 34(4):1397–1441	, 2014.	
[GŚ15]	Wilfrid Gangbo and Andrzej Święch Existence of a solution to an equati Journal of Differential Equations, 2	n. on arising from the theory of 59(11):6573–6643, Decembe	of Mean Field Games. er 2015.	
[GT19]	Wilfrid Gangbo and Adrian Tudoras On differentiability in the Wasserste Journal de Mathématiques Pures et	cu. ein space and well-posedness e <i>Appliquées</i> , 125:119–174, I	s for Hamilton–Jacobi equations May 2019.	5.

Averil Prost

Test functions vs semidifferentials in Wasserstein

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result 0000
[Jer22]	Othmane Jerhaoui. Viscosity Theory of First Order Han PhD thesis, Institut Polytechnique d	nilton Jacobi Equations in So le Paris, Paris, 2022.	ome Metric Spaces.	
[Jim23]	Chloé Jimenez. Equivalence between strict viscosity extension of the Hamiltonian in $L_{\mathbb{P}}^2$. November 2023.	solution and viscosity soluti	on in the space of Wasserstein	and regular
[JJZ]	Frédéric Jean, Othmane Jerhaoui, au Deterministic optimal control on Rie Preprint, available at https://ensta-	nd Hasnaa Zidani. emannian manifolds under pi paris.hal.science/hal-035647	robability knowledge of the init 87.	tial condition.
[JMQ20]	Chloé Jimenez, Antonio Marigonda, Optimal control of multiagent syster Calculus of Variations and Partial D	and Marc Quincampoix. ms in the Wasserstein space ifferential Equations, 59, Ma	arch 2020.	
[JMQ22]	Chloé Jimenez, Antonio Marigonda, Dynamical systems and Hamilton-Ja representations. <i>Journal of Mathematical Analysis (S</i> (In press).	and Marc Quincampoix. acobi-Bellman equations on 5 51MA), 2022.	the Wasserstein space and the	ir L^2

Definitions 000000	The tangent space	Semidifferentials 000000	Viscosity solutions	Main result 0000
[JPZ23]	Othmane Jerhaoui, Averil Prost, and H Viscosity solutions of centralized contr Preprint, available at https://hal.scier	Hasnaa Zidani. rol problems in measure s nce/hal-04335852.	;paces, 2023.	
[Lio07]	Pierre-Louis Lions. Jeux à champ moyen, 2006/2007. Conférences au Collège de France.			
[MQ18]	Antonio Marigonda and Marc Quincar Mayer control problem with probabilis Journal of Differential Equations, 264	npoix. tic uncertainty on initial (5):3212–3252, March 20	positions. 118.	
[MZ22]	Chenchen Mou and Jianfeng Zhang. Wellposedness of Second Order Master Preprint (arXiv:1903.09907).	er Equations for Mean Fie	eld Games with Nonsmooth Data	a, 2022.
[PW18]	Huyên Pham and Xiaoli Wei. Bellman equation and viscosity solutio ESAIM: Control, Optimisation and Ca	ons for mean-field stochas alculus of Variations, 24(1	stic control problem. 1):437–461, January 2018.	

[Sal23] William Salkeld. Higher order Lions-Taylor expansions, March 2023. Preprint (arXiv:2303.17571).

Definitions 000000	The tangent space	Semidifferentials	Viscosity solutions	Main result

[WZ20] Cong Wu and Jianfeng Zhang.

Viscosity Solutions to Parabolic Master Equations and McKean-Vlasov SDEs with Closed-loop Controls. *The Annals of Applied Probability*, 30(2):936–986, 2020.