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Definitions The tangent space Semidifferentials Viscosity solutions Main result

Aim of the talk

We consider a first-order Hamilton-Jacobi equation of the form

H (µ,DµV (µ)) = 0 µ ∈ Ω, V (µ) = J(µ) µ ∈ ∂Ω. (1)

Here
• µ is a measure, Ω an open set of the Wasserstein space P2(Rd).
• DµV (µ) is the application of the directional derivatives.

Our aim Compare two notions of viscosity solutions for (1).
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Viscosity solutions

In Rd, viscosity solutions of H(x,∇xu) = 0 are equivalently defined using

• smooth test functions:
u is a subsolution if it is u.s.c, satisfies
u ⩽ J, and if whenever φ ∈ C1 is
such that u− φ reaches a maximum at x,

there holds H (x,∇φ(x)) ⩽ 0.

• sub and superdifferentials:

u is a if it is , satisfies
uJ, and if whenever a vector v belongs
to the of u at x,

there holds H (x, v) 0.

Both are linked by ∇φ(x) = v. Extension to viscosity in measure spaces?
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Notations

Let µ, ν be two probability measures on Rd. If f : Rd → Y is measurable, the pushforward
f#µ is a measure on Y given by (f#µ)(A) = µ(f−1(A)) for any measurable A ⊂ Y .

Denote

Γ(µ, ν) :=
{
η = η(x, y) ∈ P2(Rd × Rd)

∣∣∣ πx#η = µ, πy#η = ν
}
.

the possible transport plans between µ and ν. The 2-Wasserstein distance is defined as

d2W(µ, ν) := inf
η∈Γ(µ,ν)

∫
(x,y)∈(Rd)2

|x− y|2 dη(x, y).

Def – Wasserstein space The Wasserstein space P2(Rd) is the set of measures µ
such that d2W(µ, δ0) is finite, endowed with the Wasserstein distance.
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Viscosity solutions in P2(Rd)

Using Lions differentiability, introduced in [Lio07].
• Represent any µ ∈ P2(Rd) as the law of a set of random variables X ∈ L2

P(E, E ;Rd),
that is, µ = X#P. Then any function u : P2(Rd) → R can be lifted in

U : L2
P(E, E ;Rd), U(X) := u(X#P).

The gradient of U at X in the Hilbert space L2
P(E, E ;Rd) is shown to be of the form

p ◦X for some p ∈ L2
µ(Rd;TRd) that depends only on µ = X#P.

• Another equivalent formulation [CD18]: define first linear derivative along curves
h 7→ (1− h)µ+ hν, then functional derivative as the gradient of the linear derivative.

• Provides a definition of C1 functions and higher derivatives [Sal23], used to obtain
existence of “regular” solutions to mean-field games [CDLL19, CP20, MZ22] and viscosity
solutions [PW18, BY19, DJS23]...
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Viscosity solutions in P2(Rd)

Using semidifferentials in a well-chosen tangent space [AGS05]. Usually taken as

TanµP2(Rd) := {∇φ | φ ∈ C∞
c (Rd)}

L2
µ(Rd;TRd)

.

• Possible to define sub/superdifferential and a corresponding notion of viscosity solutions
[CQ08], variations in [MQ18, JMQ20, JMQ22, Jim23] with δ−differentials.

• Geometric definition of the Wasserstein gradient as the intersection of the sub and
superdifferential in [GNT08, GŚ14], shown to be equivalent to the Lions differentiability in
[GT19].

Other ideas: applying metric viscosity [AF14, GŚ15], linear derivatives [FN12, BIRS19],
pathwise solutions [WZ20, CGK+23], directional derivatives [Jer22, JPZ23].
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Using directional derivatives

Idea: define the Hamiltonian over a set of functions, as

H : T → R,

where T is a set of pairs (µ, p) with µ ∈ P2(Rd) and p : TanµP2(Rd) → R.

Typically, p : ξ → Dµφ(ξ) for some φ : P2(Rd) → R, the application of directional derivatives.
For instance,

H(µ, p) := sup
u∈U

−p (f(µ, u)) , H(µ, p) := sup
ξ∈Tanµ, ∥ξ∥µ=1

|p(ξ)| .

• Line opened in [JJZ], developped in [Jer22, JPZ23].
• ® Is it possible to reformulate using semidifferentials? ®
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Velocities

Let TRd :=
⋃

x∈Rd{x} × TxRd be the tangent bundle, endowed with |(x, v)|2 := |x|2 + |v|2.

The set P2(TRd) may be endowed with various operations:

λ · ξ := (πx, λπv)#ξ (rescaling),

expµ(h · ξ) := (πx + hπv)#ξ (exponential).

Def Given ξ, ζ ∈ P2(TRd)µ, define W 2
µ (ξ, ζ) := infη∈Γµ(ξ,ζ)

∫
(x,v,w) |v − w|2 dη.
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Generalized tangent space

Let µ, ν ∈ P2(Rd), and denote

−→µν := {(πx, πy − πx)#η | η ∈ Γo(µ, ν)}

the set of velocities of geodesics (exp−1
µ (ν)).

Def The generalized tangent space
TanµP2(Rd) to µ is the set

{λ · −→µν | λ ∈ R+, ν ∈ P2(Rd)}
Wµ

.

The set Tanµ is stable by scaling by a real
factor and enjoys a well-defined projection πµ.
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Convexity property

Def – Horizontal interpolation Let ξ0, ξ1 ∈ P2(TRd)µ, β ∈ Γµ(ξ0, ξ1) and t ∈ [0, 1].
Then

ξβt := (πx, (1− t)πv + tπw)#β ∈ P2(TRd)µ.

By [Gig08], the set TanµP2(Rd) is horizontally convex.

Def 1 If A ⊂ P2(TRd)µ, define convA as the smallest horizontally convex that is closed
with respect to Wµ and contains A.
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Barycenter

Notice that conv{ξ} ≠ ξ in general!

Proposition – Barycenter
Let ξ ∈ P2(TRd)µ, and Bary (ξ) ∈
L2
µ(Rd;TRd) its barycenter, given by

Bary (ξ)(x) =
∫
v∈TxRd

vdξx(v).

Then

Bary (ξ)#µ ∈ conv{ξ}.
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Directional derivatives

For an application φ : P2(TRd) → R, we denote

Dµφ : TanµP2(Rd) → R, Dµφ(ξ) := lim
h↘0

φ
(
expµ(h · ξ)

)
− φ(µ)

h
.

Def – Metric cotangent bundle Let

Tµ :=

p : TanµP2(Rd) → R

∣∣∣∣∣∣ p is positively homogeneous and

Lipschitz-continuous w.r.t. Wµ.


Denote T :=

⋃
µ∈P2(Rd){µ} × Tµ.
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Precise definition of the Hamiltonian

The Hamiltonian is defined as an application

H : T → R.

For instance,
H (µ, p) := sup

u∈U
−p(πµf(µ, u)).

If φ : P2(Rd) → R is directionally differentiable and locally Lipschitz-continuous, then
Dµφ ∈ Tµ. This gives meaning to

H (µ,Dµφ) = 0.

• Give a notion of viscosity solutions using the semidifferentials of [AF14].
• Compare it with a notion of viscosity solutions using test functions.
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Pseudo scalar products

Denote 0µ := (πx, 0)#µ and ∥ξ∥µ := Wµ(ξ, 0µ).

Def Given ξ, ζ ∈ P2(TRd)µ, define

⟨ξ, ζ⟩+µ :=
1

2

[
∥ξ∥2µ + ∥ζ∥2µ −W 2

µ(ξ, ζ)
]
.

To ease notations, we also denote ⟨ξ, ζ⟩−µ := −⟨−ξ, ζ⟩+µ .

Expanding the definition of Wµ yields

⟨ξ, ζ⟩+µ = sup
η∈Γµ(ξ,ζ)

∫
(x,v,w)

⟨v, w⟩ dη, and ⟨ξ, ζ⟩−µ = inf
η∈Γµ(ξ,ζ)

∫
(x,v,w)

⟨v, w⟩ dη.

P2(TRd)µ is the set of probabilities on TRd with base µ, over which Wµ(·, ·) is a distance.
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Properties of ⟨·, ·⟩±µ

If ξ = f#µ and ζ = g#µ for some f, g ∈ L2
µ(Rd;TRd), then

⟨ξ, ζ⟩±µ =

∫
x∈Rd

∫
x∈Rd

⟨f(x), g(x)⟩ dµ(x) = ⟨f, g⟩L2
µ
.

There always holds ⟨ξ, ξ⟩+µ = ∥ξ∥2µ. However,

⟨ξ, ξ⟩−µ = ∥ξ∥2µ ⇐⇒ ∃f ∈ L2
µ(Rd;TRd) such that ξ = f#µ.

For instance, if ξ = 1
2δ(0,v0) +

1
2δ(0,v1), then β := 1

2δ(0,v0,v1) +
1
2δ(0,v1,v0) yields

⟨ξ, ξ⟩−µ ⩽
1

2
⟨v0, v1⟩+

1

2
⟨v1, v0⟩ = −1 = −∥ξ∥2µ.
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Convexity properties

Proposition 1 Let ξ0, ξ1 ∈ P2(TRd)µ and β ∈ Γµ(ξ0, ξ1). Then for any ζ ∈
P2(TRd)µ,

[0, 1] : t 7→
〈
ζ, ξβt

〉+
µ

is convex, [0, 1] : t 7→
〈
ζ, ξβt

〉−
µ

is concave.

Let A,B ⊂ P2(TRd)µ be nonempty, horizontally convex and bounded sets, with A
compact w.r.t. the topology induced by Wµ. Then

sup
α∈A

inf
β∈B

⟨α, β⟩±µ = inf
β∈B

sup
α∈A

⟨α, β⟩±µ .
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Fréchet sub and superdifferentials [AF14, Definition 4.7]

Def – Superdifferential Let φ : P2(Rd) → R. An element ξ ∈ TanµP2(Rd) belongs
to the superdifferential of φ at µ, denoted ∂+

µ φ, if for all ν ∈ P2(Rd),

φ(ν)− φ(µ) ⩽ inf
η∈−→µν

⟨ξ, η⟩−µ + o (dW(µ, ν)) .

Def – Subdifferential Let φ : P2(Rd) → R. An element ξ ∈ TanµP2(Rd) belongs
to the subdifferential of φ at µ, denoted ∂−

µ φ, if for all ν ∈ P2(Rd),

φ(ν)− φ(µ) ⩾ sup
η∈−→µν

⟨ξ, η⟩+µ + o (dW(µ, ν)) .
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Example

Given A ⊂ P2(TRd)µ, let again convA be the smallest closed set B containing A such that

∀ξ0, ξ1 ∈ B, ∀β ∈ Γµ(ξ0, ξ1), ∀t ∈ [0, 1], ξβt = (πx, (1− t)πv + tπw)#β ∈ B.

Proposition 2 Let φ : µ 7→ d2W(µ, σ) for some fixed σ ∈ P2(Rd). The superdifferential
of φ is everywhere nonempty and given by

∂+
µ φ = conv {−2 · ξ | ξ ∈ −→µσ} .

For reference, the gradient of x 7→ |x− y|2 at x is 2(x− y) = −2(y − x).

Averil Prost Test functions vs semidifferentials in Wasserstein March 22, 2024 21 / 29



Definitions The tangent space Semidifferentials Viscosity solutions Main result

Example

Given A ⊂ P2(TRd)µ, let again convA be the smallest closed set B containing A such that

∀ξ0, ξ1 ∈ B, ∀β ∈ Γµ(ξ0, ξ1), ∀t ∈ [0, 1], ξβt = (πx, (1− t)πv + tπw)#β ∈ B.

Proposition 2 Let φ : µ 7→ d2W(µ, σ) for some fixed σ ∈ P2(Rd). The superdifferential
of φ is everywhere nonempty and given by

∂+
µ φ = conv {−2 · ξ | ξ ∈ −→µσ} .

For reference, the gradient of x 7→ |x− y|2 at x is 2(x− y) = −2(y − x).

Averil Prost Test functions vs semidifferentials in Wasserstein March 22, 2024 21 / 29



Definitions The tangent space Semidifferentials Viscosity solutions Main result

Table of Contents

First definitions

Geometric tangent space

Generalized sub and superdifferentials

Definitions of viscosity solutions

The equivalence result

Averil Prost Test functions vs semidifferentials in Wasserstein March 22, 2024 22 / 29



Definitions The tangent space Semidifferentials Viscosity solutions Main result

Test function spaces

Def – Test functions For any µ ∈ Ω ⊂ P2(Rd), define

T+,µ :=

φ : Ω → R

∣∣∣∣∣∣ φ is lower semicontinuous, directionally differentiable at µ,

∂+
µ φ is nonempy, bounded and Dµφ(µ)(·) = infζ∈∂+

µ φ ⟨·, ζ⟩−µ .

 .

Similarly, T−,µ := −T+,µ.

• Does not appeal to the theory of Wasserstein gradient.
• Retains a link between directional derivatives and semidifferentials.
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Examples of test functions

Proposition 3 Let σ ∈ P2(Rd) be fixed. Then the function d2W(·, σ) belongs to T+,µ

for any µ ∈ P2(Rd).

From [Gig08, Proposition 4.10], there holds that

Dµd
2
W(·, σ)(ξ) = inf

η∈−2·−→µσ
⟨ξ, η⟩−µ .

Proposition 4 Let µ ∈ P2(Rd) and ζ ∈ P2(TRd)µ be fixed. Then the function
φ : ν 7→ infη∈−→µν ⟨η, ζ⟩

−
µ belongs to T+,µ, and there holds

Dµφ(ξ) = ⟨ξ, ζ⟩−µ .

Averil Prost Test functions vs semidifferentials in Wasserstein March 22, 2024 24 / 29



Definitions The tangent space Semidifferentials Viscosity solutions Main result

Examples of test functions

Proposition 3 Let σ ∈ P2(Rd) be fixed. Then the function d2W(·, σ) belongs to T+,µ

for any µ ∈ P2(Rd).

From [Gig08, Proposition 4.10], there holds that

Dµd
2
W(·, σ)(ξ) = inf

η∈−2·−→µσ
⟨ξ, η⟩−µ .

Proposition 4 Let µ ∈ P2(Rd) and ζ ∈ P2(TRd)µ be fixed. Then the function
φ : ν 7→ infη∈−→µν ⟨η, ζ⟩

−
µ belongs to T+,µ, and there holds

Dµφ(ξ) = ⟨ξ, ζ⟩−µ .

Averil Prost Test functions vs semidifferentials in Wasserstein March 22, 2024 24 / 29



Definitions The tangent space Semidifferentials Viscosity solutions Main result

Examples of test functions

Proposition 3 Let σ ∈ P2(Rd) be fixed. Then the function d2W(·, σ) belongs to T+,µ

for any µ ∈ P2(Rd).

From [Gig08, Proposition 4.10], there holds that

Dµd
2
W(·, σ)(ξ) = inf

η∈−2·−→µσ
⟨ξ, η⟩−µ .

Proposition 4 Let µ ∈ P2(Rd) and ζ ∈ P2(TRd)µ be fixed. Then the function
φ : ν 7→ infη∈−→µν ⟨η, ζ⟩

−
µ belongs to T+,µ, and there holds

Dµφ(ξ) = ⟨ξ, ζ⟩−µ .

Averil Prost Test functions vs semidifferentials in Wasserstein March 22, 2024 24 / 29



Definitions The tangent space Semidifferentials Viscosity solutions Main result

The notion of viscosity

Consider the HJB equation

H(µ,Dµu(µ)) = 0 µ ∈ Ω, u(µ) = J(µ) µ ∈ ∂Ω. (2)

Def – Using test functions
A map u : P2(Rd) → R is a subsolution
of (2) if it is u.s.c, if u⩽⩽⩽ J over ∂Ω, and
if for any µ and φ ∈ T+++,µ such that u−φ
reaches a maximum at µ,

H(µ,Dµφ)⩽⩽⩽ 0.

Def – Using semidifferentials
A map u : P2(Rd) → R is a subsolution
of (2) if it is u.s.c, if u⩽⩽⩽ J over ∂Ω, and
if for any element ξ ∈ ∂+++µ u,

H(µ, ⟨ξ, ·⟩−−−µ )⩽⩽⩽ 0.
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Statement

Assume that H : T → R satisfies

∀φ ∈ T+,µ, H (µ,Dµφ) ⩽ sup
ξ∈∂+

µ φ

H
(
µ, ⟨ξ, ·⟩−µ

)
,

∀φ ∈ T−,µ, H (µ,Dµφ) ⩾ inf
ξ∈∂−

µ φ
H

(
µ, ⟨ξ, ·⟩+µ

)
.

(hyp-H)

Theorem Assume that (hyp-H) is satisfied. Then a map u : P2(Rd) → R is a viscosity
subsolution (resp. supersolution) in the sense of test functions if and only if it is a viscosity
subsolution (resp. supersolution) in the sense of semidifferentials.

• Given an element ζ ∈ ∂+
µ u, build a test function φ such that Dµφ(ξ) = ⟨ξ, ζ⟩−µ .

• Given a test function, use the representation of Dµφ and (hyp-H).

Averil Prost Test functions vs semidifferentials in Wasserstein March 22, 2024 27 / 29



Definitions The tangent space Semidifferentials Viscosity solutions Main result

Statement

Assume that H : T → R satisfies

∀φ ∈ T+,µ, H (µ,Dµφ) ⩽ sup
ξ∈∂+

µ φ

H
(
µ, ⟨ξ, ·⟩−µ

)
,

∀φ ∈ T−,µ, H (µ,Dµφ) ⩾ inf
ξ∈∂−

µ φ
H

(
µ, ⟨ξ, ·⟩+µ

)
.

(hyp-H)

Theorem Assume that (hyp-H) is satisfied. Then a map u : P2(Rd) → R is a viscosity
subsolution (resp. supersolution) in the sense of test functions if and only if it is a viscosity
subsolution (resp. supersolution) in the sense of semidifferentials.

• Given an element ζ ∈ ∂+
µ u, build a test function φ such that Dµφ(ξ) = ⟨ξ, ζ⟩−µ .

• Given a test function, use the representation of Dµφ and (hyp-H).

Averil Prost Test functions vs semidifferentials in Wasserstein March 22, 2024 27 / 29



Definitions The tangent space Semidifferentials Viscosity solutions Main result

Statement

Assume that H : T → R satisfies

∀φ ∈ T+,µ, H (µ,Dµφ) ⩽ sup
ξ∈∂+

µ φ

H
(
µ, ⟨ξ, ·⟩−µ

)
,

∀φ ∈ T−,µ, H (µ,Dµφ) ⩾ inf
ξ∈∂−

µ φ
H

(
µ, ⟨ξ, ·⟩+µ

)
.

(hyp-H)

Theorem Assume that (hyp-H) is satisfied. Then a map u : P2(Rd) → R is a viscosity
subsolution (resp. supersolution) in the sense of test functions if and only if it is a viscosity
subsolution (resp. supersolution) in the sense of semidifferentials.

• Given an element ζ ∈ ∂+
µ u, build a test function φ such that Dµφ(ξ) = ⟨ξ, ζ⟩−µ .

• Given a test function, use the representation of Dµφ and (hyp-H).

Averil Prost Test functions vs semidifferentials in Wasserstein March 22, 2024 27 / 29



Definitions The tangent space Semidifferentials Viscosity solutions Main result

Statement

Assume that H : T → R satisfies

∀φ ∈ T+,µ, H (µ,Dµφ) ⩽ sup
ξ∈∂+

µ φ

H
(
µ, ⟨ξ, ·⟩−µ

)
,

∀φ ∈ T−,µ, H (µ,Dµφ) ⩾ inf
ξ∈∂−

µ φ
H

(
µ, ⟨ξ, ·⟩+µ

)
.

(hyp-H)

Theorem Assume that (hyp-H) is satisfied. Then a map u : P2(Rd) → R is a viscosity
subsolution (resp. supersolution) in the sense of test functions if and only if it is a viscosity
subsolution (resp. supersolution) in the sense of semidifferentials.

• Given an element ζ ∈ ∂+
µ u, build a test function φ such that Dµφ(ξ) = ⟨ξ, ζ⟩−µ .

• Given a test function, use the representation of Dµφ and (hyp-H).

Averil Prost Test functions vs semidifferentials in Wasserstein March 22, 2024 27 / 29



Definitions The tangent space Semidifferentials Viscosity solutions Main result

Examples of applications

• Eikonal-type Hamiltonians Let κ : R+ → R+ be nondecreasing.

H : T → R, H(µ, p) := sup
ξ∈TanµP2(Rd), ∥ξ∥µ=1

κ (|p(ξ)|) .

• “Concave-convex” Hamiltonians Let F1 and F2 : P2(Rd) ⇒ P2(TRd) be set-valued
maps such that for any µ ∈ P2(Rd) and i ∈ {1, 2}, Fi[µ] is a nonempty, horizontally
convex and compact subset of TanµP2(Rd) endowed with Wµ.

H : T → R, H(µ, p) := sup
ξ1∈F1[µ]

−p(ξ1) + inf
ξ2∈F2[µ]

−p(ξ2).
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Conclusion and perspectives

Conclusion
• Possibility to use explicit test functions built from the squared Wasserstein distance or

pseudo scalar products.

• Equivalence between two notions of viscosity solutions under an explicit condition over the
Hamiltonian.

Perspectives
• Extension over P2(N ), where N is not Hilbertian (network structure).
• Link with Lions differentiability?
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Thank you!
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