Localized Inverse Design

Vincent Perrollaz

Institut Denis Poisson, Université de Tours

Deuxième journée ANR COSS 22 Mars 2024

Vincent Perrollaz ([IDP]
---------------------	-------

イロト イ団ト イヨト イヨト

Hyperbolic Conservation Laws and Entropy Solutions Outring

- Origins
- Characteristics: paradise lost
- Entropy solutions

3 Localizations

4 Conclusion and Perspectives

(日) (同) (三) (三)

Integral Form

Differential Form

- Integral Form: u and F just L^1_{loc} .
- Differential Form:

$$u, F \in \mathcal{C}^{1}$$

$$\implies \int_{x_{1}}^{x_{2}} \int_{t_{1}}^{t_{2}} \partial_{t} u(t, x) dt dx = -\int_{t_{1}}^{t_{2}} \int_{x_{1}}^{x_{2}} \partial_{x} F(t, x) dx dt$$

$$\implies \frac{\partial u}{\partial t}(t, x) + \frac{\partial F}{\partial x}(t, x) = 0.$$

Vincent Perrollaz (IDP)

2

<ロ> (日) (日) (日) (日) (日)

Closure

• $F(t,x) = -\kappa \partial_x u(t,x)$ Heat Equation.

$$\partial_t u - \kappa \partial_{xx}^2 u = 0.$$

• $F(t,x) = \frac{u^2(t,x)}{2}$ Burgers' equation (inspired by Euler's equation)

$$\partial_t u + \partial_x \left(\frac{u^2}{2}\right) = 0$$

• $F(t,x) = u(t,x)v_{\max}(1 - \frac{u(t,x)}{u_{\max}})$ LWR equation

$$\partial_t u + \partial_x \left(u(t,x) v_{\max}(1 - \frac{u(t,x)}{u_{\max}}) \right) = 0$$

Vincent Perrollaz (IDP)

Hyperbolic Conservation Laws and Entropy Solutions

- Origins
- Characteristics: paradise lost
- Entropy solutions

3 Localizations

4 Conclusion and Perspectives

(日) (同) (三) (三)

Characteristics' method I

$$\partial_t u + a(t,x)\partial_x u = 0 \iff (\partial_t + a(t,x)\partial_x)u = 0$$

Vector field $(x, t) \mapsto (a(t, x), 1)$

Vincent Perrollaz (IDP)

<ロ> (日) (日) (日) (日) (日)

э

Characteristics' method II

$$(\partial_t + a(t, x)\partial_x)u = 0 \iff \begin{cases} \frac{d}{dt}\psi(t, x) = a(t, \psi(t, x)), \\ \psi(0, x) = x \\ \frac{d}{dt}u(t, \psi(t, x)) = 0 \end{cases}$$

Vincent Perrollaz (IDP)

э

Characteristics' method III

•
$$\begin{cases} \partial_t u + \partial_x f(u) = 0\\ u(0, x) = u_0(x)\\ u \in \mathcal{C}^1 \end{cases}$$

•
$$\partial_t u + \partial_x f(u) = 0$$

• $\begin{cases} q \in C^1(\mathbb{R}^+; \mathbb{R}) \\ p(t) := u(t, q(t)) \end{cases}$

$$\Rightarrow \partial_t u + f'(u)\partial_x u = 0,$$

$$\Rightarrow \dot{p}(t) = \partial_t u + \dot{q}(t)\partial_x u,$$

"
$$\Rightarrow "\begin{cases} \dot{q}(t) = f'(p(t)) \\ \dot{p}(t) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} p(t) = p(0) \\ \dot{q}(t) = f'(p(0)) \\ \Rightarrow u(t, x) = u_0(x - tf'(u(t, x))) \end{cases}$$

・ロト ・回ト ・ヨト ・ヨト

2

In a picture with Burgers f'(p) = p

Characteristics: paradise lost

Generic Blowup

$$\begin{cases} \partial_t u + \partial_x f(u) = 0, \quad t > 0, \quad x \in \mathbb{R}, \\ u(0, x) = u_0(x). \end{cases}$$

Theorem

For
$$f(u) = \frac{u^2}{2}$$
 (in fact convex or concave) and **ANY** $u_0 \in C_c^{\infty}(\mathbb{R})$
 $u_0 \neq 0 \Rightarrow \exists T > 0, \quad \exists X \in \mathbb{R}, \qquad \partial_x u(t, X) \xrightarrow[t \to T^-]{-\infty}.$
But

$||u(t,\cdot)||_{L^{\infty}(\mathbb{R})} \leq ||u_0||_{L^{\infty}(\mathbb{R})}.$

▲ No linearization techniques!

Vincent Perrollaz ((IDP)	
---------------------	-------	--

イロト イヨト イヨト イヨト

(1)

11/36

Hyperbolic Conservation Laws and Entropy Solutions

- Origins
- Characteristics: paradise lost
- Entropy solutions
- 2 Inverse Design: Homogeneous Case

3 Localizations

4 Conclusion and Perspectives

(日) (同) (三) (三)

Entropy solutions

Weak/Integral solutions

Three formulations, different regularity.

• Differential: $\partial_t u(t, x) + \partial_x f(u(t, x)) = 0$, $\forall t > 0, \forall x \in \mathbb{R}$

• Integral:
$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{a}^{b} u(t,x) dx = f(u(t,a)) - f(u(t,b))$$
$$\forall t > 0, \quad \forall a < b$$
• Weak:
$$\int_{0}^{+\infty} \int_{-\infty}^{+\infty} u(t,x) \partial_{t} \phi(t,x) + f(u(t,x)) \partial_{x} \phi(t,x) dx dt = 0$$
$$\forall \phi \in \mathcal{C}_{c}^{\infty}((0,+\infty) \times \mathbb{R}).$$

2

イロト イヨト イヨト イヨト

Riemann initial data: one discontinuity!

• Simplest discontinuity and invariance by $x \mapsto x + \eta$:

$$u_0(x) := \begin{cases} u_l & \text{if } x < 0\\ u_r & \text{if } x > 0 \end{cases}$$

• Invariance by $(t,x)\mapsto (\lambda t,\lambda x)\Rightarrow$

$$u(t,x)=v\left(\frac{x}{t}\right)$$

• Simplest case:

$$u(t,x) = \begin{cases} u_l & \text{if } x < \lambda t \\ u_r & \text{if } x > \lambda t \end{cases}$$

What is λ?

イロト イポト イヨト イヨト

Rankine-Hugoniot condition for weak solution

Burgers' characteristics: the Good

Vincent Perrollaz	(IDP)
-------------------	-------

イロン イ団と イヨン イヨン

Semigroup?

Propagation of discontinuities \implies semigroup on piecewise constant functions!

17/36

・ロト ・回ト ・ヨト ・

Burgers' characteristics: the Bad

Vincent Perrolla	z (IDP)
------------------	---------

イロン イ団と イヨン イヨン

18/36

Continuous Semigroup?

• $\epsilon > 0$, consider

$$u_0^{\epsilon}(x) = \begin{cases} u_l & \text{if } x < -\epsilon \\ u_m & \text{if } -\epsilon < x < \epsilon \\ u_r & \text{if } \epsilon < x \end{cases}$$

• $\epsilon \rightarrow 0$, admissibility condition on discontinuities (for continuous semigroup)

Entropy solutions

Rarefaction Wave

▲ No reversibility in time.

Vincent Perrolla:	z (IDP)
-------------------	---------

Localized Inverse Design

COSS 22-03-24

イロト イヨト イヨト イヨト

20 / 36

Wave Front Tracking Algorithm (Dafermos, Holden-Risebro, Di Perna, Bressan)

Vincent Perrollaz (IDP)

21/36

Hyperbolic Conservation Laws and Entropy Solutions

- Origins
- Characteristics: paradise lost
- Entropy solutions

2 Inverse Design: Homogeneous Case

3 Localizations

4 Conclusion and Perspectives

イロト イ団ト イヨト イヨト

Inverse Design Problem: Back to the Future!

- For this part: $u \mapsto f(u)$ strongly convex,
- Entropy solutions \implies semigroup $(S_t^{CL})_{t>0}$ acting on $L^{\infty}(\mathbb{R})$.
- Reachable states: given T > 0

determine $\{w \in L^{\infty}(\mathbb{R}) : \exists u_0 \in L^{\infty}(\mathbb{R}) \ S_T^{CL}u_0 = w\}.^1$

• Inverse Design: given T>0 and w in $\mathrm{L}^\infty(\mathbb{R})$

determine $I_T(w) := \{u_0 \in L^{\infty}(\mathbb{R}) : S_T^{CL}u_0 = w\}.$

¹Oleinik 57, Ancona-Marson 98, ...

Why?

- Irreversible dynamics for entropy solutions.
- Intropy semigroup compactifying².
- Sonic boom minimization. (Gosse Zuazua 17)
- Oata assimilation for traffic flow through tollgate estimates, accident localization.
- Control theory through Russell's extension method (Ancona-Marson 98, Horsin 98).

²De Lellis-Golse 2005, Ancona-Glass-Nguyen 2015, 2019, 2020 → < 🗇 → < 🚍 →

24/36

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

2

Characterization of reachable states

Going back to Oleinik 56!

Definition

T > 0, $w \in L^{\infty}(\mathbb{R})$ $r_w^T(x) := x - Tf'(w(x))$.

Theorem

For f convex,

$$I_T(w)
eq \emptyset \iff w \in S_T^{CL}(L^\infty(\mathbb{R})) \iff r_w^T$$
 nondecreasing a.e.

W ∈ S^{CL}_T(L[∞](ℝ)) ⇒ W ∈ BV(ℝ),
 Not better: take r^T_w Cantor's staircase.

(日) (同) (三) (三)

Characterization of initial data

- Theorem (Colombo-Perrollaz)
- $I_T(w) \neq \emptyset \implies$
 - $I_T(w)$ is a convex cone,
 - **2** $I_T(w)$ is a F_{σ} set for the L^1_{loc} topology.

Furthermore

- $I_T(w)$ singleton iff additionally $w \in C^0$
- **2** otherwise unbounded L^{∞} , but locally L^{∞} closed L^{1}_{loc} ,
- and there is no extremal facet of finite dimension besides the vertex!

In fact complete characterization of $I_T(w)$.

Vincent Perrollaz	(IDP)
-------------------	-------

(日) (同) (三) (三)

Tool: Hamilton-Jacobi connection AND optimal control

If
$$f^*(q) = \sup_{p \in R} (pq - f(p))$$
 (Legendre transform)

$$\begin{cases}
V(t, x) := \inf_{c \in L^{\infty}(0, T)} \left(\int_0^t f^*(c(s)) ds + P(y(0)) \right) \\
\dot{y}(s) = c(s) \quad 0 < s < t \\
y(t) = x
\end{cases}$$

$$\iff \begin{cases}
\partial_t V + f(\partial_x V) = 0, \\
V(0) = P \\
V \text{ viscosity solution} \\
u = \partial_x V \\
u(0) = P' \\
u \text{ entropy solution}
\end{cases}$$

+ specific minimizers for the optimal control problem!

イロト イポト イヨト イヨト

Hyperbolic Conservation Laws and Entropy Solutions

- Origins
- Characteristics: paradise lost
- Entropy solutions

Inverse Design: Homogeneous Case

3 Localizations

4 Conclusion and Perspectives

イロト イ団ト イヨト イヨト

Traffic Flow Problem

$$\left\{ egin{aligned} &\partial_ au
ho+\partial_y(q(
ho))=0,\ &q(
ho(t,0))=d_l(t) &t\in\mathbb{R},\quad x\in(0,L),\ &q(
ho(t,L))=d_r(t), \end{aligned}
ight.$$

- Steady state evolution, Not a Cauchy problem!
- L > 0, ρ is a density (of cars for instance),
- q is bell shaped, $q(\rho) = v_{\max}(1 \rho/\rho_{\max})\rho$ (LWR instance).
- ρ is an entropy solution,
- d_l and d_r are flow rates (for instance of cars through a toll gate)

Question: given $d_{r|[a,b]}$ what can we say about ρ ?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(2)

Localizations

Change of system

- New quantity: $u(t,x) := q(\rho(x,t))$
- Hypothesis: traffic is congested q'(ρ(τ, y)) < 0 or not q'(ρ(τ, y)) > 0 everywhere at once!
- New flux: f reciprocal of one of the branches of q, so convex!
- Conclusion: *u* is an entropy solution of

$$\partial_t u + \partial_x f(u) = 0, \tag{3}$$

satisfying

$$\begin{cases} u(0, x) = d_l(x), \\ u(L, x) = d_r(x). \end{cases}$$
(4)

• **Problem:** Inverse Design with localized knowledge of d_r in [a, b] and u has to take value in $[\min q, \max q]!$

vincent remonaz (IDF)	Vincent	Perrol	laz i	(IDP)
-----------------------	---------	--------	-------	-------

31/36

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Back to the Future II

- J non trivial closed real interval,
- T positive number,
- K₀ non trivial closed real interval,
- K_T non trivial closed real interval.

Definition

A profile $u_T \in L^{\infty}(\mathbb{R}; J)$ is reachable at t = T on K_T if there exists a $u_o \in L^{\infty}(\mathbb{R}; J)$ such that $S_T^{CL} u_{o|K_T} = u_T$. Denote further

$$I_{\mathcal{T}}(u_{\mathcal{T}};J)_{|\mathcal{K}_o}^{|\mathcal{K}_{\mathcal{T}}} := \left\{ \tilde{u}_o \in L^{\infty}(\mathcal{K}_o;J) : \exists u_o \in L^{\infty}(\mathbb{R};J) \text{ with } \frac{S_{\mathcal{T}}^{CL}u_{o|\mathcal{K}_{\mathcal{T}}} = u_{\mathcal{T}}}{u_{o|\mathcal{K}_o} = \tilde{u}_o} \right\}.$$
 (5)

(日) (同) (三) (三)

Characterization

Hypothesis:

- K_T non trivial compact interval,
- u_T in $L^{\infty}(\mathbb{R}, J)$ such that $r_T : x \mapsto x f'(u_T(x))$ is nondecreasing on K_T ,

•
$$K_0 := r_T(K_T)$$
, $\check{y} := \min K_0$.

Theorem (Colombo-Perrollaz)

There exist two functions u_0^{\flat} and u_0^{\sharp} in $L^{\infty}(K_0; J)$ such that

$$I_{\mathcal{T}}(u_{\mathcal{T}};J)_{|K_o}^{|K_{\mathcal{T}}} = \{u_o \in L^{\infty}(K_0;J) : \int_{\check{y}}^{y} u_o dx \in \left[\int_{\check{y}}^{y} u_o^{\flat} dx, \int_{\check{y}}^{y} u_o^{\natural} dx\right] \text{ for all } y \in K_0\}$$

Remarks

- Direct characterization of u_0^{\flat} ,
- Compactness of $I_T(u_T; J)_{|K_0}^{|K_T}$...

(日) (同) (三) (三)

Hyperbolic Conservation Laws and Entropy Solutions

- Origins
- Characteristics: paradise lost
- Entropy solutions

Inverse Design: Homogeneous Case

3 Localizations

イロト イ団ト イヨト イヨト

Remarks and Open Questions

- Variationnal formula for u_0^{\sharp} ?
- Inverse Design for Sampling of the target profile?
- Propagation of measurement errors in the Inverse Design?
- Robust numerical methods for Inverse Design?
- Robustness using stochastic perturbation terms?
- Inverse Design for flux limited solutions of LWR model?

• • • • • • • • • • • • •

THANK YOU FOR YOUR ATTENTION

э

<ロ> (日) (日) (日) (日) (日)