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Hyperbolic Conservation Laws and Entropy Solutions Origins

Integral Form

t

x

t1

t2

x1 x2

∫ x2
x1

u(t2, x)dx

=∫ t2
t1

F (t, x1)dt

+
∫ x2

x1
u(t1, x)dx

−
∫ t2

t1
F (t, x2)dt
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Hyperbolic Conservation Laws and Entropy Solutions Origins

Differential Form

Integral Form: u and F just L1
loc .

Differential Form:

u,F ∈ C1

=⇒
∫ x2

x1

∫ t2

t1

∂tu(t, x)dtdx = −
∫ t2

t1

∫ x2

x1

∂x F (t, x)dxdt

=⇒ ∂u
∂t (t, x) + ∂F

∂x (t, x) = 0.
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Hyperbolic Conservation Laws and Entropy Solutions Origins

Closure

F (t, x) = −κ∂x u(t, x) Heat Equation.

∂tu − κ∂2
xx u = 0.

F (t, x) = u2(t,x)
2 Burgers’ equation (inspired by Euler’s equation)

∂tu + ∂x

(
u2

2

)
= 0

F (t, x) = u(t, x)vmax(1 − u(t,x)
umax

) LWR equation

∂tu + ∂x

(
u(t, x)vmax(1 − u(t, x)

umax
)
)

= 0
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Hyperbolic Conservation Laws and Entropy Solutions Characteristics: paradise lost
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Hyperbolic Conservation Laws and Entropy Solutions Characteristics: paradise lost

Characteristics’ method I

∂tu + a(t, x)∂x u = 0 ⇐⇒ (∂t + a(t, x)∂x )u = 0
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Hyperbolic Conservation Laws and Entropy Solutions Characteristics: paradise lost

Characteristics’ method II

(∂t + a(t, x)∂x )u = 0 ⇐⇒


d
dtψ(t, x) = a(t, ψ(t, x)),
ψ(0, x) = x
d
dt u(t, ψ(t, x)) = 0
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Hyperbolic Conservation Laws and Entropy Solutions Characteristics: paradise lost

Characteristics’ method III

•


∂tu + ∂x f (u) = 0
u(0, x) = u0(x)
u ∈ C1

• ∂tu + ∂x f (u) = 0 =⇒ ∂tu + f ′(u)∂x u = 0,

•

{
q ∈ C1(R+;R)
p(t) := u(t, q(t))

=⇒ ṗ(t) = ∂tu + q̇(t)∂x u,

“=⇒”
{

q̇(t) = f ′(p(t))
ṗ(t) = 0

=⇒

{
p(t) = p(0)
q̇(t) = f ′(p(0))

=⇒ u(t, x) = u0(x − tf ′(u(t, x)))
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Hyperbolic Conservation Laws and Entropy Solutions Characteristics: paradise lost

In a picture with Burgers f ′(p) = p
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Hyperbolic Conservation Laws and Entropy Solutions Characteristics: paradise lost

Generic Blowup

{
∂tu + ∂x f (u) = 0, t > 0, x ∈ R,
u(0, x) = u0(x).

(1)

Theorem

For f (u) = u2

2 (in fact convex or concave) and ANY u0 ∈ C∞
c (R)

u0 ̸≡ 0 ⇒ ∃T > 0, ∃X ∈ R, ∂x u(t,X ) →
t→T −

−∞.

But
||u(t, ·)||L∞(R) ≤ ||u0||L∞(R).

!△ No linearization techniques!
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Hyperbolic Conservation Laws and Entropy Solutions Entropy solutions

Weak/Integral solutions

Three formulations, different regularity.

• Differential: ∂tu(t, x) + ∂x f (u(t, x)) = 0,
∀t > 0,∀x ∈ R

• Integral: d
dt

∫ b

a
u(t, x)dx = f (u(t, a)) − f (u(t, b))

∀t > 0, ∀a < b

• Weak:
∫ +∞

0

∫ +∞

−∞
u(t, x)∂tϕ(t, x) + f (u(t, x))∂xϕ(t, x)dxdt = 0

∀ϕ ∈ C∞
c ((0,+∞) × R).
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Hyperbolic Conservation Laws and Entropy Solutions Entropy solutions

Riemann initial data: one discontinuity!

Simplest discontinuity and invariance by x 7→ x + η:

u0(x) :=
{

ul if x < 0
ur if x > 0

Invariance by (t, x) 7→ (λt, λx) ⇒

u(t, x) = v
(x

t

)
Simplest case:

u(t, x) =
{

ul if x < λt
ur if x > λt

What is λ?
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Hyperbolic Conservation Laws and Entropy Solutions Entropy solutions

Rankine-Hugoniot condition for weak solution

t

x

t1

t2

x1 x2

u = ul

u = ur

=⇒ ul(x2 − x1)

+ (t2 − t1)f (ul)

=⇒ x2−x1
t2−t1

= f (ur )−f (ul )
ur −ul

Integral Form

= ur (x2 − x1)

− (t2 − t1)f (ur )
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Hyperbolic Conservation Laws and Entropy Solutions Entropy solutions

Burgers’ characteristics: the Good

u0(x) =
{

1.0 if x < 0
0.0 if x > 0

⇒ u(t, x) =
{

1.0 if x < t
2

0 if x > t
2
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Hyperbolic Conservation Laws and Entropy Solutions Entropy solutions

Semigroup?

Propagation of discontinuities =⇒ semigroup on piecewise constant functions!
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Hyperbolic Conservation Laws and Entropy Solutions Entropy solutions

Burgers’ characteristics: the Bad

u0(x) =
{

0.0 if x < 0
1.0 if x > 0.

?⇒ u(t, x) =
{

0 if x < t
2

1.0 if x > t
2
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Hyperbolic Conservation Laws and Entropy Solutions Entropy solutions

Continuous Semigroup?
ϵ > 0, consider

uϵ
0(x) =


ul if x < −ϵ
um if − ϵ < x < ϵ

ur if ϵ < x
ϵ → 0, admissibility condition on discontinuities (for continuous semigroup)

∀um,
f (ul) − f (um)

ul − um
≥ f (ul) − f (ur )

ul − ur
≥ f (um) − f (ur )

um − ur
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Hyperbolic Conservation Laws and Entropy Solutions Entropy solutions

Rarefaction Wave

u0(x) =
{

0.0 if x < 0
1.0 if x > 0.

⇒ u(t, x) =


0 if x < 0
x
t if 0 < x < t
1.0 if x > t

!△ No reversibility in time.
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Hyperbolic Conservation Laws and Entropy Solutions Entropy solutions

Wave Front Tracking Algorithm (Dafermos, Holden-Risebro, Di Perna, Bressan)
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Inverse Design: Homogeneous Case

Inverse Design Problem: Back to the Future!

For this part: u 7→ f (u) strongly convex,
Entropy solutions =⇒ semigroup (SCL

t )t≥0 acting on L∞(R).
Reachable states: given T > 0

determine {w ∈ L∞(R) : ∃u0 ∈ L∞(R) SCL
T u0 = w}.1

Inverse Design: given T > 0 and w in L∞(R)

determine IT (w) := {u0 ∈ L∞(R) : SCL
T u0 = w}.

1Oleinik 57, Ancona-Marson 98, . . .
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Inverse Design: Homogeneous Case

Why?

1 Irreversible dynamics for entropy solutions.
2 Entropy semigroup compactifying2.
3 Sonic boom minimization. (Gosse Zuazua 17)
4 Data assimilation for traffic flow through tollgate estimates, accident

localization.
5 Control theory through Russell’s extension method (Ancona-Marson 98,

Horsin 98).

2De Lellis-Golse 2005, Ancona-Glass-Nguyen 2015, 2019, 2020
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Inverse Design: Homogeneous Case
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Inverse Design: Homogeneous Case

Characterization of reachable states

Going back to Oleinik 56!

Definition
T > 0, w ∈ L∞(R) rT

w (x) := x − Tf ′(w(x)).

Theorem
For f convex,

IT (w) ̸= ∅ ⇐⇒ w ∈ SCL
T (L∞(R)) ⇐⇒ rT

w nondecreasing a.e.

1 w ∈ SCL
T (L∞(R)) =⇒ w ∈ BV(R),

2 Not better: take rT
w Cantor’s staircase.
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Inverse Design: Homogeneous Case

Characterization of initial data

Theorem (Colombo-Perrollaz)
IT (w) ̸= ∅ =⇒

1 IT (w) is a convex cone,
2 IT (w) is a Fσ set for the L1

loc topology.
Furthermore

1 IT (w) singleton iff additionally w ∈ C0

2 otherwise unbounded L∞, but locally L∞ closed L1
loc ,

3 and there is no extremal facet of finite dimension besides the vertex!

In fact complete characterization of IT (w).
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Inverse Design: Homogeneous Case

Tool: Hamilton-Jacobi connection AND optimal control

If f ∗(q) = sup
p∈R

(pq − f (p)) (Legendre transform)


V (t, x) := inf

c∈L∞(0,T )

(∫ t
0 f ∗(c(s))ds + P(y(0))

)
ẏ(s) = c(s) 0 < s < t
y(t) = x

⇐⇒


∂tV + f (∂x V ) = 0,
V (0) = P
V viscosity solution

u=∂x V⇐⇒


∂tu + ∂x (f (u)) = 0,
u(0) = P ′

u entropy solution

+ specific minimizers for the optimal control problem!
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Localizations

Traffic Flow Problem


∂τρ+ ∂y (q(ρ)) = 0,
q(ρ(t, 0)) = dl(t)
q(ρ(t, L)) = dr (t),

t ∈ R, x ∈ (0, L), (2)

Steady state evolution, Not a Cauchy problem!
L > 0, ρ is a density (of cars for instance),
q is bell shaped, q(ρ) = vmax(1 − ρ/ρmax)ρ (LWR instance).
ρ is an entropy solution,
dl and dr are flow rates (for instance of cars through a toll gate)

Question: given dr |[a,b] what can we say about ρ?
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Localizations

Change of system

New quantity: u(t, x) := q(ρ(x , t))
Hypothesis: traffic is congested q′(ρ(τ, y)) < 0 or not q′(ρ(τ, y)) > 0
everywhere at once!
New flux: f reciprocal of one of the branches of q, so convex!
Conclusion: u is an entropy solution of

∂tu + ∂x f (u) = 0, (3)

satisfying {
u(0, x) = dl(x),
u(L, x) = dr (x).

(4)

Problem: Inverse Design with localized knowledge of dr in [a, b] and u has
to take value in [min q,max q]!
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Localizations

Back to the Future II

J non trivial closed real interval,
T positive number,
K0 non trivial closed real interval,
KT non trivial closed real interval.

Definition
A profile uT ∈ L∞(R; J) is reachable at t = T on KT if there exists a
uo ∈ L∞(R; J) such that SCL

T uo |KT
= uT .

Denote further

IT (uT ; J)|KT
|Ko

:=
{

ũo ∈ L∞(Ko ; J) : ∃ uo ∈ L∞(R; J) with SCL
T uo |KT

= uT
uo |Ko = ũo

}
. (5)
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Localizations

Characterization

Hypothesis:
KT non trivial compact interval,
uT in L∞(R, J) such that rT : x 7→ x − f ′(uT (x)) is nondecreasing on KT ,
K0 := rT (KT ), y̌ := min K0.

Theorem (Colombo-Perrollaz)

There exist two functions u♭
0 and u♯

0 in L∞(K0; J) such that

IT (uT ; J)|KT
|Ko

= {uo ∈ L∞(K0; J) :
∫ y

y̌ uodx ∈
[∫ y

y̌ u♭
odx ,

∫ y
y̌ u♯

odx
]

for all y ∈ K0}

Remarks
Direct characterization of u♭

0,
Compactness of IT (uT ; J)|KT

|Ko
. . .
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Conclusion and Perspectives

Remarks and Open Questions

Variationnal formula for u♯
0?

Inverse Design for Sampling of the target profile?
Propagation of measurement errors in the Inverse Design?
Robust numerical methods for Inverse Design?
Robustness using stochastic perturbation terms?
Inverse Design for flux limited solutions of LWR model?

Vincent Perrollaz (IDP) Localized Inverse Design COSS 22–03–24 35 / 36



Conclusion and Perspectives

THANK YOU FOR YOUR ATTENTION
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