Trace of the gradient for HJB

Régis Monneau

Paris; March 22, 2024

Main question

u viscosity solution of HJB
$\|D u\|_{L^{\infty}} \leq C$
$\Longrightarrow \quad$ trace of $D u$?
C^{1} strictly convex Hamiltonian

Case $H \equiv 0$ with no trace of u_{x}

$$
u_{t}+H\left(u_{x}\right)=0 \quad \text { for } \quad x>0
$$

A model problem

A model problem in 1D

u Lipschitz up to the boundary Γ_{T}

A model problem in 1D

$H: \mathbb{R} \rightarrow \mathbb{R}$ strictly convex
$H(\lambda p+(1-\lambda) q)<\lambda H(p)+(1-\lambda) H(q) \quad$ for all $\quad \lambda \in(0,1), \quad p \neq q$

A model problem in 1D

$\left\{\begin{array}{l}u \text { Lipschitz up to the boundary } \Gamma_{T}, \\ H: \mathbb{R} \rightarrow \mathbb{R}, C^{1} \text { strictly convex }\end{array}\right.$

Can we define the trace of u_{x} on Γ_{T} ?

A good case on the whole line

$$
\left\{\begin{array}{l}
u_{t}+H\left(u_{x}\right)=0 \quad \text { for } t>0, \quad x \in \mathbb{R} \\
H^{\prime \prime} \geq 1 / K
\end{array}\right.
$$

Then u is semiconcave with

$$
u_{x x} \leq \frac{K}{t} \quad(\text { Lax-Oleinik }) \quad \Longrightarrow \quad u_{x} \in B V_{t, x}
$$

and u_{x} has a trace, say for $x=0^{+}$.

See also

[Cannarsa, Sinestrari, 2004] : semiconcavity estimates
[Bianchini, De Lellis, Robyr, 2011] : $\left(u_{t}, u_{x}\right) \in S B V_{t, x}$

A bad case on the half line

$$
\left\{\begin{array}{l}
u_{t}+H\left(u_{x}\right)=0 \quad \text { for } \quad t>0, \quad x>0 \\
H^{\prime \prime} \geq 1 / K
\end{array}\right.
$$

Then $\left|u_{x}\right|_{B V_{x}}$ can blow up in finite time.
[Adimurthi, Ghoshal, Dutta , Veerappa Gowda (2011)]

A model problem in 1D

$$
\left\{\begin{array}{l}
u_{t}+H\left(u_{x}\right)=0 \text { on the box } Q_{T}:=(-T, T) \times(0, R) \\
u \text { Lipschitz up to the boundary } \Gamma_{T}:=(-T, T) \times\{0\} \\
H: \mathbb{R} \rightarrow \mathbb{R}, C^{1} \text { strictly convex }
\end{array}\right.
$$

Again, can we define the trace of u_{x} on Γ_{T} ?

$$
\left\{\begin{array}{l}
u_{t}+H\left(u_{x}\right)=0 \text { on the box } Q_{T}:=(-T, T) \times(0, R) \\
u \text { Lipschitz, up to the boundary } \Gamma_{T}:=(-T, T) \times\{0\} \\
H: \mathbb{R} \rightarrow \mathbb{R}, C^{1} \text { strictly convex }
\end{array}\right.
$$

Thm TTN (Tangential To Normal), [M.]

For $0=(0,0) \in \Gamma_{T}$,
$u_{t}(0)$ exists on $\Gamma_{T} \quad \Longrightarrow \quad u_{x}(0)$ exists on \bar{Q}_{T}

TTN result

$$
\left\{\begin{array}{l}
u_{t}+H\left(u_{x}\right)=0 \text { on the box } Q_{T}:=(-T, T) \times(0, R) \\
u \text { Lipschitz, up to the boundary } \Gamma_{T}:=(-T, T) \times\{0\} \\
H: \mathbb{R} \rightarrow \mathbb{R}, C^{1} \text { strictly convex }
\end{array}\right.
$$

Thm TTN (Tangential To Normal), [M.]

For $0=(0,0) \in \Gamma_{T}$,
$\lambda:=u_{t}(0)$ exists on $\Gamma_{T} \quad \Longrightarrow \quad u_{x}(0)$ exists on \bar{Q}_{T}
Precisely

$$
u(t, 0)-u(0,0)=\lambda t+o(|t|) \quad \Longrightarrow \quad u(X)-u(0)=\hat{D} u(0) \cdot X+o(|X|)
$$

for $X=(t, x)$ and $\hat{D} u:=\left(u_{t}, u_{x}\right)$.

Trace result

$$
\left\{\begin{array}{l}
u_{t}+H\left(u_{x}\right)=0 \text { on the box } Q_{T}:=(-T, T) \times(0, R) \\
u \text { Lipschitz on } \bar{Q}_{T} \\
H: \mathbb{R} \rightarrow \mathbb{R}, C^{1} \text { strictly convex }
\end{array}\right.
$$

Thm 2 (Trace of the gradient), [M.]

The gradient $u_{x}(t, 0)$ exists for a.e. $t \in(-T, T)$ and

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{Q_{T}}\left|u_{x}(t, \varepsilon x)-u_{x}(t, 0)\right| d t d x=0
$$

Trace result

$$
\left\{\begin{array}{l}
u_{t}+H\left(u_{x}\right)=0 \text { on the box } Q_{T}:=(-T, T) \times(0, R) \\
u \text { Lipschitz on } \bar{Q}_{T} \\
H: \mathbb{R} \rightarrow \mathbb{R}, C^{1} \text { strictly convex }
\end{array}\right.
$$

Thm 2 (Trace of the gradient), [M.]

The gradient $u_{x}(t, 0)$ exists for a.e. $t \in(-T, T)$ and

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{Q_{T}}\left|u_{x}(t, \varepsilon x)-u_{x}(t, 0)\right| d t d x=0
$$

and more generally

$$
\hat{D} u(\cdot, \varepsilon \cdot) \rightarrow(\hat{D} u)_{\mid \Gamma_{T}} \quad \text { in } \quad L^{1}\left(\text { normal } ; L^{1}(\text { tangential })\right)
$$

(Pointwise to L^{1}, using Young measures).

Application : HJ to CL

If u is a Lipschitz viscosity solution of

$$
\begin{cases}u_{t}+H\left(u_{x}\right)=0 & \text { for } \quad x>0 \\ -u_{x}+v_{D}=0 & \text { for } \quad x=0 \quad \text { (weakly) }\end{cases}
$$

then $v:=u_{x}$ is an entropy solution of

$$
\begin{cases}v_{t}+H(v)_{x}=0 & \text { for } \quad x>0 \\ v=v_{D} & \text { for } \quad x=0 \quad \text { (weakly) }\end{cases}
$$

See also (when moreover $H^{\prime \prime} \geq \delta>0$)
[Cardaliaguet, Forcadel, M., 2023]
[Cardaliaguet, Forcadel, Girard, M., 2023]
[Imbert, Forcadel, M., 2023] : general boundary conditions

$$
v_{t}+H(v)_{x}=0 \quad \text { for } \quad x>0
$$

Trace of v on $\{x=0\}$ for "nonlinear $H^{\text {" }}$:
[Vasseur, 2001]
[Panov, 2007]

A counter-example to TTN result, with H not convex

There exists a viscosity solution of $u_{t}+H\left(u_{x}\right)=0$ with $u(t, 0) \equiv 0$ and

$$
v_{S}<v_{R}<v_{L}, \quad C^{1,1}\left(\left[v_{S}, v_{L}\right]\right) \ni H=\left\{\begin{array}{l}
\text { concave on }\left[v_{S}, v_{R}\right] \\
\text { convex on }\left[v_{R}, v_{L}\right]
\end{array}\right.
$$

and $v:=u_{x}$ entropy solution of $v_{t}+H(v)_{x}=0$

Here $u(X)-u(0) \neq \hat{D} u(0) \cdot X+o(|X|)$.

Higher dimensions and (t, x)-dependence

$\Omega \subset \mathbb{R}^{n}$ and X-dependence

$\int u_{t}+H(D u, X)=0 \quad$ on $\quad Q_{T}:=(0, T) \times \Omega \ni(t, x)=X$
u Lipschitz on $\bar{Q}_{T}, \quad H: \mathbb{R}^{n} \times \bar{Q}_{T} \rightarrow \mathbb{R}$ continuous
$H: p \mapsto H\left(p, X_{0}\right), C^{1}$ strictly convex at some $X_{0} \in \Gamma_{T}:=(0, T) \times \partial \Omega$

Thm TTN' (Tangential To Normal), [M.]

Let

$$
\hat{D} u=\left(u_{t}, D u\right)
$$

If $\partial \Omega \in C^{1}$, then

$$
\hat{D}\left(u_{\mid \Gamma_{T}}\right)\left(X_{0}\right) \text { exists } \Longrightarrow \hat{D} u\left(X_{0}\right) \text { exists }
$$

$\Omega \subset \mathbb{R}^{n}$ and X-dependence

$\int u_{t}+H(D u, X)=0 \quad$ on $\quad Q_{T}:=(0, T) \times \Omega \quad \ni(t, x)=X$ with the cylinder $\Omega:=B_{1}^{\prime} \times(0,1) \ni\left(x^{\prime}, x_{n}\right)$
u Lipschitz on $\bar{Q}_{T}, \quad H: \mathbb{R}^{n} \times \bar{Q}_{T} \rightarrow \mathbb{R}$ continuous
$H: p \mapsto H\left(p, X_{0}\right), C^{1}$ strictly convex at all $X_{0} \in \Gamma_{T}:=(0, T) \times B_{1}^{\prime} \times\{0\}$

Thm 2' (Trace of the gradient), [M.]

Then $\hat{D} u:=\left(u_{t}, D u\right)$ exists a.e. on Γ_{T} and

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{Q_{T}}\left|\hat{D} u\left(t, x^{\prime}, \varepsilon x_{n}\right)-\hat{D} u\left(t, x^{\prime}, 0\right)\right| d t d x^{\prime} d x_{n}=0
$$

Application : Dirichlet problem

$$
H: p \mapsto H\left(p, x_{0}\right), C^{1} \text { strictly convex for all } x_{0} \in \partial \Omega
$$

Application : Dirichlet problem

$$
H: p \mapsto H\left(p, x_{0}\right), C^{1} \text { strictly convex for all } x_{0} \in \partial \Omega
$$

Thm TTN* (Existence of a normal derivative), [M.]

If u is Lipschitz on $\bar{\Omega}$, and $\partial \Omega \in C^{1}$ with $g \in C^{1}(\partial \Omega)$, then $\frac{\partial u}{\partial n}$ exists everywhere on $\partial \Omega$.

Codimension $d>1$ and (t, x)-dependence

Codimension $d>1$ with $\Omega:=\mathbb{R}^{d} \backslash\{0\}$

Similar to
[Achdou, Le Bris, 2023]

Codimension $d>1$ with $\Omega:=\mathbb{R}^{d} \backslash\{0\}$

$$
\left\{\begin{array}{rll}
u_{t}+H(D u)=0 & \text { on } & Q_{T}:=(-T, T) \times \Omega, \quad \Omega:=\mathbb{R}^{d} \backslash\{0\} \\
\text { with } & \Gamma_{T}:=(-T, T) \times\{0\}
\end{array}\right.
$$

u Lipschitz on $\bar{Q}_{T}, \quad H: \mathbb{R}^{d} \rightarrow \mathbb{R}, C^{1}$ strictly convex

Thm TTN"' (Tangential To Normal), [M.]

For $0=(0,0) \in \Gamma_{T}$ and $\hat{D} u=\left(u_{t}, D u\right)$, we have $\hat{D}\left(u_{\mid \Gamma_{T}}\right)(0)$ exists along $\Gamma_{T} \quad \Longrightarrow \quad u$ has all direct. deriv. at 0 along \bar{Q}_{T}

$$
\frac{u(\varepsilon X)-u(0)}{\varepsilon}=: u^{\varepsilon}(X) \rightarrow u^{0}(X) \quad \text { with } \quad u^{0}(\lambda X)=\lambda u^{0}(X), \quad \lambda>0
$$

A counter-example with $H(p, x)$ not Hölder in x

For $\partial_{t}=0, d=2$, there exists a viscosity solution u of

$$
\left\{\begin{array}{l}
a(x)|D u|^{2}=1 \quad \text { on } \quad B_{1} \subset \mathbb{R}^{2} \\
1 \leq a \leq 2, \quad \text { with } a \text { only continuous on } B_{1}
\end{array}\right.
$$

and

$$
\frac{u(\varepsilon x)-u(0)}{\varepsilon}=: u^{\varepsilon}(x) \text { does not converges as } \varepsilon \rightarrow 0
$$

Codimension $d>1$, Hölder coefficients

$$
\left\{\begin{array}{llll}
u_{t}+H(D u, X)=0 & \text { on } & Q_{T}:=(-T, T) \times B_{1}^{\prime} \times \Omega, & B_{1}^{\prime} \subset \mathbb{R}^{m} \\
\Omega:=B_{1} \backslash\{0\} \subset \mathbb{R}^{d} & \text { with } & \Gamma_{T}:=(-T, T) \times B_{1}^{\prime} \times\{0\} &
\end{array}\right.
$$

u Lipschitz on $\bar{Q}_{T}, \quad H: \mathbb{R}^{m+d} \times \bar{Q}_{T} \rightarrow \mathbb{R}$ continuous
$\left.\begin{array}{l}\begin{array}{l}0<\delta \leq D_{p p}^{2} H \leq \delta^{-1} \\ H\end{array} \alpha \text {-Hölder in } X \text { for bounded } p\end{array}\right\}$ for all X in a neighborhood of 0

Thm TTN"" (Tangential To Normal), [M.]

For $0=(0,0,0) \in \Gamma_{T}$ and $\hat{D} u=\left(u_{t}, D u\right)$, we have $\hat{D}\left(u_{\mid \Gamma_{T}}\right)(0) \quad$ exists along $\Gamma_{T} \quad \Longrightarrow \quad u$ has all direct. deriv. at 0 along \bar{Q}_{T}

$$
\frac{u(\varepsilon X)-u(0)}{\varepsilon}=: u^{\varepsilon}(X) \rightarrow u^{0}(X) \quad \text { with } \quad u^{0}(\lambda X)=\lambda u^{0}(X), \quad \lambda>0
$$

Codimension $d>1$, Hölder coefficients

same assumptions

$\left.\begin{array}{l}0<\delta \leq D_{p p}^{2} H \leq \delta^{-1} \\ H \alpha \text {-Hölder in } X \text { for bounded } p\end{array}\right\}$ for all X in a neighborhood of Γ_{T}

Thm 2""' (Trace of directional derivatives), [M.]

Let $\hat{D} u=\left(u_{t}, D u\right)$. Then a.e. on Γ_{T} and for any $\xi \in \mathbb{R}^{1+m+d}$, the quantity $\xi \cdot \hat{D} u$ exists and

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{Q_{T}}\left|\xi \cdot \hat{D} u\left(t, x^{\prime}, \varepsilon x\right)-\xi \cdot \hat{D} u\left(t, x^{\prime}, 0\right)\right| d t d x^{\prime} d x=0
$$

Arguments for TTN

A Liouville-type result

$$
\left\{\begin{aligned}
u_{t}+H(D u) & =0 \\
u & \text { on } \quad Q=\mathbb{R} \times \mathbb{R}^{m} \times \Omega \\
u & \text { on } \quad \Gamma:=\mathbb{R} \times \mathbb{R}^{m} \times\{0\}
\end{aligned}\right.
$$

with

$$
\Omega:=\left\{\begin{array}{lll}
\mathbb{R}^{d} \backslash\{0\} & \text { if } \quad d \geq 2 \\
(0,+\infty) & \text { if } \quad d=1
\end{array}\right.
$$

Thm 4 (Liouville-type result), [M.]

Let $H: \mathbb{R}^{m+d} \rightarrow \mathbb{R}$ be C^{1} strictly convex and superlinear. If u is a viscosity solution and $\left\|\left(u_{t}, D u\right)\right\|_{L^{\infty}(\bar{Q})}<+\infty$, then

$$
u\left(t, x^{\prime}, x\right)=u(0,0, x) \quad \text { for all } \quad\left(t, x^{\prime}, x\right) \in \mathbb{R} \times \mathbb{R}^{m} \times \bar{\Omega}
$$

Consequence for the first blow-up

If

$$
\left\{\begin{array}{rll}
u_{t}+H(D u, X) & =0 & \text { on } \quad Q_{T} \\
u & =0 & \text { on } \quad \Gamma_{T} \ni 0
\end{array}\right.
$$

then

$$
\frac{u(\varepsilon X)-u(0)}{\varepsilon}=: u^{\varepsilon}(X) \rightarrow u^{0}(X)
$$

where the blow-up limit u^{0} is a global solution of

$$
\left\{\begin{aligned}
& u_{t}^{0}+H\left(D u^{0}, 0\right)=0 \\
& u^{0} \text { on } \quad \\
&=0 \text { on } \quad \Gamma:=\mathbb{R} \times \mathbb{R}^{m} \times \Omega \\
& \mathbb{R}^{m} \times\{0\}
\end{aligned}\right.
$$

Case $m=0$, codimension $d=1$, without X

$$
\left\{\begin{aligned}
& u_{t}^{0}+H\left(u_{x}^{0}\right)=0 \\
& u^{0} \text { on } \quad Q:=\mathbb{R} \times(0,+\infty) \\
& \text { on } \quad \Gamma:=\mathbb{R} \times\{0\}
\end{aligned}\right.
$$

Then

$$
\text { Liouville } \quad \Longrightarrow \quad u^{0}(t, x)=u^{0}(x)
$$

and

$$
u^{0}(x)=\min \left(x p_{+}, c+x p_{-}\right) \quad \text { with } \quad H\left(p_{ \pm}\right)=0, \quad p_{-} \leq p_{+}
$$

Exclusion of oscillations of u between u_{-}and u_{+}

Exclusion of oscillations of u between u_{-}and u_{+}

$0+H\left(\phi_{x}\right) \geq 0 \quad$ contradiction with $\quad\left\{\begin{array}{l}p_{-}<0<p_{+} \\ H\left(p_{ \pm}\right)=0>H(0)\end{array}\right.$

Conclusion

Uniqueness of the limit $u^{\varepsilon} \rightarrow u^{0} \in\left\{u_{-}, u_{+}\right\}$
Hence

$$
\frac{u(\varepsilon X)-u(0)}{\varepsilon} \rightarrow u^{0}(x)=p x \quad \text { with } \quad p=p_{ \pm}
$$

Conclusion

Uniqueness of the limit $u^{\varepsilon} \rightarrow u^{0} \in\left\{u_{-}, u_{+}\right\}$
Hence

$$
\frac{u(\varepsilon X)-u(0)}{\varepsilon} \rightarrow u^{0}(x)=p x \quad \text { with } \quad p=p_{ \pm}
$$

i.e.

$$
u(X)=u(0)+p x+o(|X|) \quad \text { where } \quad X=(t, x)
$$

Hence

$$
\hat{D} u=\left(u_{t}, u_{x}\right) \quad \text { exists at } X=(0,0)=0
$$

Arguments for Liouville result

Step 1 : barriers $u_{ \pm}$

$$
\left\{\begin{aligned}
& u_{t}+H(D u)=0 \\
& u \text { on } \quad Q=\mathbb{R} \times(0,+\infty) \\
& \text { on } \quad \Gamma=\mathbb{R} \times\{0\}
\end{aligned}\right.
$$

with

$$
\left\|\left(u_{t}, u_{x}\right)\right\|_{L^{\infty}(\bar{Q})}<+\infty
$$

By comparison, we show

$$
u_{-}(x) \leq u(t, x) \leq u_{+}(x), \quad u_{ \pm}(x)=x p_{ \pm}
$$

Define the characteristic velocities

$$
\xi_{ \pm}:=D H\left(p_{ \pm}\right) \quad \Longrightarrow \quad \xi_{-}<0<\xi_{+}
$$

Step 2 : Representation formula

For $t_{0}<t$ and $x>0$, we have

$$
u(X):=\min \left(u_{\Gamma_{t_{0}}^{t}}, u_{\Sigma_{t_{0}}}\right)(X)
$$

with $X=(t, x), Y=(s, y)$ and

$$
u_{A}(X):=\inf _{Y \in A}\left\{u(Y)+\int_{s}^{t} \mathcal{L}\left(\frac{x-y}{t-s}\right) d \tau\right\} \quad \text { with } \quad \mathcal{L}:=H^{*}
$$

Step 3 : Rigidity of optimal trajectories

For $t_{0}<t$ and $x>0$, we have

$$
u(X):=\min \left(u_{\Gamma_{t_{0}}^{t}}, u_{\Sigma_{t_{0}}}\right)(X)
$$

ξ_{-}, ξ_{+}selected by the barriers u_{-}, u_{+}

Step 3 : Rigidity of optimal trajectories

For $t_{0}<t$ and $x>0$, we have

$$
u(X):=\min \left(u_{\Gamma_{t_{0}}^{t}}^{t}, u_{\Sigma_{t_{0}}}\right)(X)
$$

This forces

$$
u_{\Gamma_{t_{0}}^{t}}(X)=u_{+}(x), \quad u_{\Sigma_{t_{0}}}(X)=c+u_{-}(x) \quad \text { for } \quad \frac{t-t_{0}}{x} \gg 1
$$

Comments on the general case

Codimension $d>1$ is much more delicate.
X-dependence:
need to control $\xi_{-}(X)$ which can rotate.

Conjecture

$$
\begin{equation*}
u_{t}+H(D u)=0 \quad \text { in } \quad\left\{x_{n}>0\right\} \tag{1}
\end{equation*}
$$

Trace conjecture

Let u be a Lipschitz viscosity solution of (1). If the graph of H does not contain any nondegenerate segments, then $\left(u_{t}, D u\right)$ has a trace on $\left\{x_{n}=0\right\}$.

THANKS!

The End

Step 3 : Rigidity of optimal trajectories

For $t_{0}<t$ and $x>0$, we have

$$
u(X):=\min \left(u_{\Gamma_{t_{0}}^{t}}^{t}, u_{\Sigma_{t_{0}}}\right)(X)
$$

with

$$
u_{\Gamma_{t_{0}}^{t}}(X)=u_{+}(x), \quad u_{\Sigma_{t_{0}}}(X)=c+u_{-}(x) \quad \text { for } \quad \frac{t-t_{0}}{x} \gg 1
$$

Step 3 : Explanation

For $\mathcal{L}=H^{*}$,

$$
U(t, x):=\left\{\begin{array}{cc}
t \mathcal{L}\left(\frac{x}{t}\right) & \text { for } \quad(t, x) \in(-\infty, 0) \times \mathbb{R} \\
0 & \text { for } \quad t=0, \quad x=0 \\
-\infty & \text { for } \quad t=0, \quad x \neq 0
\end{array}\right.
$$

is a fundamental solution of

$$
u_{t}+H(D u)=0 \quad \text { on } \quad(-\infty, 0) \times \mathbb{R}
$$

Step 3 : U tangential to $u_{ \pm}$

with

$$
t<t^{\prime}<0
$$

Step $3: U$ tangential to $u_{ \pm}$

characteristic vectors

$$
e_{+}=\left(\xi_{+}, 1, \mathcal{L}\left(\xi_{+}\right)\right) \quad \text { and } \quad e_{-}=\left(\xi_{-}, 1, \mathcal{L}\left(\xi_{-}\right)\right)
$$

Step 4 : consequence of rigidity in ξ_{-}

If $u\left(X_{0}\right)<u_{+}\left(x_{0}\right)$, then $u\left(X_{0}\right)=u\left(Y_{1}\right)+\tau \mathcal{L}\left(\xi_{-}\right)$.

with $\tau \gg 1$.

Step 4 : consequence of rigidity in ξ_{-}

For $X=(t, x)$, we have

$$
\begin{array}{rll}
& u(X)-u\left(X_{0}\right) & \\
\leq & \text { with } & \xi_{1}:=\frac{x-y_{1}}{t-t_{1}} \\
= & \left(t-t_{0}\right) \mathcal{L}\left(\xi_{1}\right)+\tau\left\{\mathcal{L}\left(\xi_{1}\right)-\mathcal{L}\left(\xi_{-}\right)\right\} & \text {with } \\
t-t_{1}=\left(t-t_{0}\right)+\tau \\
= & \left(t-t_{0}\right) \mathcal{L}\left(\xi_{1}\right)+\tau \int_{0}^{1} d \sigma \bar{\xi} \cdot D \mathcal{L}\left(\xi_{-}+\sigma \bar{\xi}\right) &
\end{array}
$$

and

$$
\bar{\xi}:=\xi_{1}-\xi_{-}=\tau^{-1} A+o\left(\tau^{-1}\right) \quad \text { with } \quad A:=x-x_{0}-\left(t-t_{0}\right) \xi_{-}
$$

Step 4 : consequence of rigidity in ξ_{-}

As $\tau \rightarrow+\infty$, we get

$$
u(X)-u\left(X_{0}\right) \leq\left(p_{-}\right) \cdot\left(x-x_{0}\right)
$$

By symmetry $X \leftrightarrow X_{0}$, we get in $\left\{u<u_{+}\right\}$

$$
u(t, x)-u\left(t_{0}, x_{0}\right)=\left(p_{-}\right) \cdot\left(x-x_{0}\right)
$$

i.e.

$$
u(t, x)=c+u_{-}(x) \quad \text { in } \quad\left\{u<u_{+}\right\}
$$

