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The Wasserstein space

P2(Rd ) :=

{
µ ∈ P(Rd ) :

∫
Rd
|x |2 dµ(x) < +∞

}

The Wasserstein Distance

For µ, ν ∈ P2(Rd ):

Π(µ, ν) = {γ ∈ P2(R2d ) : γ has marginals µ and ν}

W2(µ, ν) = min
γ∈Π(µ,ν)

{(∫
R2d
|y − x |2dγ(x , y)

)1/2
}
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Probability space

(Ω,B(Ω),P) = ([0,1],B([0,1]),L1
[0,1]

)

Probability measures as laws

For all µ ∈ P2(Rd ) it exists X ∈ L2
P(Ω,Rd ) such that:

µ = X ]P, PX = µ, the law of X is µ

the image measure of P by X is µ: µ(A) = P(X−1(A)).

For all γ ∈ Π(µ, ν), it exists X ,Y ∈ L2
P(Ω,Rd ) such that:

γ = (X ,Y )]P, X ]P = µ,Y ]P = ν.
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Through Hilbertian glasses

Wasserstein space

W2(µ, ν) = min
{
‖X − Y‖L2

P
: X ]P = µ,Y ]P = ν

}
.

P2(Rd ) as a quotient

X ∼ X ′ iff X ]P = X ′]P

P2(Rd ) ≡ L2
P(Ω)/ ∼
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Transport maps

Transport plans supported on graphs

γ = (Id ,T )]µ, µ ∈ P2(Rd ), T ∈ L2
µ(Rd ,Rd )∫

ϕ(x , y) dγ(x , y) =

∫
ϕ(x ,Tx) dµ(x).

Transport plans supported on graphs

γ = (X ,T ◦ X )]P, X ∈ L2
P(Ω,Rd ), T ∈ L2

X]P(Rd ,Rd ),∫
ϕ(x , y) dγ(x , y) =

∫
ϕ(X ,T ◦ X ) dP.
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Maps and lifts

Lifts and rearrangement invariance

Let u : P2(Rd )→ R we define the lift of u as:

U : X ∈ L2
P(Ω,Rd ) 7→ u(X ]P) ∈ R.

Then U : L2
P(Ω,Rd )→ R is rearrangement invariant:

X ]P = Y ]P⇒ U(X ) = U(Y ).

u is continuous /W2 iff it lift U is continuous /‖ · ‖L2
P
.
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Controled trajectories: a toy example

A toy example: controlling the trajectory of a herd of sheeps

• η ∈ P(C([t0,T ],Rd ))

• et (σ) = σ(t), µt := et]η = ”η ◦ e−1
t ”,

• η concentrated on curves σ with:
σ̇(t) = f (σ(t),u(t , σ), µt ) a.e. t

• f is regular, affine on u

• η = ηt ,x ⊗ µt (x)
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Controled trajectories: a toy example

Some computations with hands

µt := et]η, η = ηt ,x ⊗ µt (x)
Dynamic: σ̇(t) = f (σ(t),u(t , σ), µt )

We integrate the dynamic with respect to ηt ,x :

vt (x) :=

∫
σ̇(t) dηt ,x (σ) =

∫
f (σ(t),u(t , σ), µt ) dηt ,x (σ)

= f
(

x ,
∫

u(t , σ)dηt ,x (σ), µt

)
µt -a.e.
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Controled trajectories: a toy example

Dynamic in the space of Wassertein

vt (x) = f (x ,w(t , x), µt ) µt -a.e.

Where w is a control.

Trajectories in AC2([t0,T ],P2(Rd )) (Ambrosio, Gigli, Savaré)

We assume t 7→ µt ∈ P2(Rd ) is in AC2([t0,T ],P2(Rd )),∫ T

0

∫
Rd
|vt (x)|2 dµt (x) dt < +∞

∂tµt + div(vtµt ) = 0 in Rd×]t0,T [
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Be carefull

Remark

Define a plan γt :∫
ϕdγt (x , z) =

∫
ϕ(σ(t), σ̇(t)) dηt ,x (σ)

γt may not be of the type (Id , vt )]µt

γt may not be supported on a graph!
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A control problem

The Value function (Marigonda, Quincampoix, J. Marigonda,
Quincampoix)

V(t0, µ0) := inf
(vt ,µt ),w

{G(µT ) : µt0 = µ0}

admissible curves are in AC2([t0,T ],P2(Rd )) with

vt (x) = f (x ,w(t , x), µt ) µt -a.e.

Assume for simplicity that G is Lipschitz so that V is regular.

How can we express this problem in L2
P?

Cavagnari, Lisini, Orrieri, Savaré,
J. Marigonda, Quincampoix and J.
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How can we express this problem in L2
P?

A fonctionnal in L2
P candidate to be the lift of V

W (t0,X ) = inf
(Xt ,u)

{
G(XT ]P) : Xt0 = X

}
admissible curves are in AC2([t0,T ],L2

P(Ω)d ) with

Ẋt (ω) = f (Xt (ω),u(t , ω),Xt]P)

W is regular. Do we have that W (·,X ) = V(·, µ0) if X ]P = µ0?

Question
Given an admissible µt , can we find Xt admissible for W such
that:

Xt]P = µt ?
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From Wasserstein to L2
P

Building Xt

The Superposition Principle (AGS) gives
η ∈ P(C([t0,T ],Rd )) associated to µt : et]η = µt

It exists Tη ∈ L2
P(Ω,P(C([t0,T ],Rd ))) such that:

Tη]P = η.

set Xt := (et ◦ Tη) so that:

Xt]P = (et ◦ Tη)]P = et]η = µt

Ẋt (ω) = vt (Xt (ω)) = f (Xt (ω),u(t , ω),Xt]P)

with u(t , ω) := w(t ,Xt (ω)).
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From Wasserstein to L2
P

Building Xt

η ∈ P(C([t0,T ],Rd )) associated to µt : et]η = µt
Concentrated on curves such that σ̇ = vt (σ)

It exists Tη ∈ L2
P(Ω,P(C([t0,T ],Rd ))) such that:

Tη]P = η

set Xt := (et ◦ Tη) so that:

Xt]P = (et ◦ Tη)]P = et]η = µt

Ẋt (ω) = vt (Xt (ω)) = f (Xt (ω),u(t , ω),Xt]P)

with u(t , ω) := w(t ,Xt (ω)).
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Value in L2
P

Consequence on the value

V(t0, µ0) ≥W (t0,Xt0)

Problem
We cannot choose the starting point Xt0 among all Y0 such that
Y0]P = µ0
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Solving problem

Important tool

Let X ,Y ∈ L2
P(Ω,Rd ) such that X ]P = Y ]P.

Then, for any n > 0, there exists τn : Ω→ Ω bijective s.t.:

(i) ‖X ◦ τn − Y‖L∞
P (Ω,Rd ) ≤ 1

n ,

(ii) τn]P = τ−1
n ]P = P.

Of course (X ◦ τn)]P = X ]P.
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Solving the problem

Solving the problem: We cannot choose Xt0

Given Y0 such that Y0]P = µ0 and Xt as above
Using the tool, build Y n

t = Xt ◦ τn with:

(Xt ◦ τn)]P = µt , ‖Y0 − Y n
t0‖ ≤

1
n
.

W (·,Y n
t0) ≤ V(·, µ0)

(!) the sequence of curves may not converge
we don’t care because of the regularity of W .

Consequence

V(·, µ0) ≥W (·,Y0) if Y0]P = µ0.
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From L2
P to Wasserstein: The opposite inequality

From L2
P to Wasserstein

Let Yt such that:

Ẏt (ω) = f (Yt (ω),u(t , ω),Yt]P).

Set µt := Yt]P and γt = (Yt , Ẏt )]P
vt (x) =

∫
y dγx

t (y) is the projection of Ẏt on

HYt = {ϕ ◦ Yt : ϕ ∈ L2
Yt ]P}.

Note that γt may devide masses.
t 7→ µt is admissible for V(Yt0]P)
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From L2
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From L2
P to Wasserstein

Let Yt such that:

Ẏt (ω) = f (Yt (ω),u(Yt , ω),Yt]P).

Set µt := Yt]P and γt = (Yt , Ẏt )]P
vt (x) =

∫
y dγx

t (y), vt ◦ Xt is the projection of Ẏt on

HYt = {ϕ ◦ Yt : ϕ ∈ L2
Yt ]P}.

Note that γt may devide masses.
t 7→ µt is admissible for V(Yt0]P)

C. Jimenez Rencontre ANR COntrol on Stratified Structures



The Wasserstein Space
A multi-agent optimal control problem

Hamilton-Jacobi in the space of Wasserstein
Extending the Hamiltonian in L2

P in a regular way

Equality of problems in Wasserstein and L2
P

Equality of values: W is the lift of V

V(t0, µ0) = infµt0 =µ0 G(µT )

(µs)s ∈ AC2([t0,T ],P2(Rd ))
vt (x) = f (x ,w(t , x), µt )

V (t0,X ) = infXt0 =X G(XT ]P)

(Xt )t ∈ AC2([t0,T ],L2
P(Ω)d )

Ẋt (ω) = f (Xt ,u(t , ω),Xt]P)

Remarks

The problem in L2
P may have no solution, it depends on the

choice of X .
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A result in Wasserstein space

Characterization of the value (Marigonda Quincampoix, J.
Marigonda Quincampoix, J.)

The functionnal V is the unique viscosity solution of :

(HJ)


∂tu(t , µ) +H(µ,Dµu(t , µ)) = 0 ∀(t , µ) ∈ [0,T [×P2(Rd )

u(T , µ) = G(µ) ∀µ ∈ P2(Rd )

with H defined for (µ,p) ∈ P2 × L2
µ as:

H(µ,p) := inf
u

{∫
Rd

f (x ,u(x), µ) · p(x) dµ(x)

}
.
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Fréchet Subdifferential in Wasserstein

Subdifferential (Gangbo, Nguyen and Tudorascu)

Let (t0, µ0) ∈ [0,T [×P2(Rd ), we have (pt ,pµ) ∈ D−u(t0, µ0) if:
pµ ∈ Tµ0(Rd )

for all (t , ν), γ ∈ Π(µ0, ν) :

u(t , ν) ≥ u(t0, µ0) + pt (t − t0) +

∫
pµ(x) · (y − x) dγ(x , y)

+o
(√
‖x − y‖2L2

γ
+ |t − t0|2

)
.
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Viscosity solution

Definition (Gangbo, Nguyen and Tudorascu)

w is a viscosity supersolution of (HJ) if for all
(t0, µ0) ∈ [0,T [×P2(Rd ):

pt +H(µ0,pµ) ≤ 0 ∀(pt ,pµ) ∈ D−w(t0, µ0).

define subsolutions in the same way.
w is a viscosity solution if it is both a supersolution and a
subsolution.
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Translating the notion of viscosity solution in L2
P

Lift of H
We set H(X ,p ◦ X ) := H(X ]P,p) for all p ∈ L2

X]P(Rd ,Rd ).

Fréchet sub-differential in L2
P

(pt ,Z ) ∈ D−U(t0,X ) if for all (t ,Y ), it holds:

U(t ,Y ) ≥ U(t0,X ) + pt (t − t0) + 〈Z ,Y − X 〉

+o
(√
‖Y − X‖2

L2
P

+ |t − t0|2
)
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Viscosity supersolution in Wasserstein space
V is a supersolution in the previous sense if

pt + H(X ,pX ◦ X ) ≤ 0 ∀(pt ,pX ◦ X ) ∈ D−V (t ,X )

with pX ∈ TX]P(Rd ).

Crucial points

The lift of H is not defined on all (L2
P(Rd ,Rd ))2,

The definition of P2-viscosity super-solution involves only a
part of the Fréchet subdifferential in L2

P
U is a viscosity solution in L2

P ⇒ u is a viscosity solution in
Gangbo-Nguyen-Tudorascu sense.
If we want V to be a viscosity solution in L2

P, we have to
extend the lift H.

C. Jimenez Rencontre ANR COntrol on Stratified Structures



The Wasserstein Space
A multi-agent optimal control problem

Hamilton-Jacobi in the space of Wasserstein
Extending the Hamiltonian in L2

P in a regular way

Viscosity supersolution in Wasserstein space
V is a supersolution in the previous sense if

pt + H(X ,pX ◦ X ) ≤ 0 ∀(pt ,pX ◦ X ) ∈ D−V (t ,X )

with pX ∈ TX]P(Rd ).

Crucial points

The lift of H is not defined on all (L2
P(Rd ,Rd ))2,

The definition of P2-viscosity super-solution involves only a
part of the Fréchet subdifferential in L2

P,
U is a viscosity solution in L2
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Example

Lions’ lecture at the Collége de France

He considers H(µ,p) = ‖p‖2L2
µ

its Lift is H(X ,p ◦ X ) = ‖p ◦ X‖2L2
P

which he naturally extends as

H̃(X ,Y ) = ‖Y‖2L2
P

this extension is regular.

We would like to do that in more general cases.
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Literature

Literature
Several extensions already exist in the literature

Gangbo and Tudorascu: H1(X ,Z )

Cavagnari, Marigonda, Quincampoix: H2(X ,Z ).
In both cases a projection of Z in HX is used in order to
turn (X ,Z ) into some (X ,p ◦ X ).
In other terms they turn γ(x , z) = (X ,Z )]P into a plan
supported on the graph of x 7→

∫
zdγx .

They turn "transport plans into transport plan
supported on graphs".
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Properties of these extensions

Theorem (Gangbo, Tudorascu)

u is a viscosity solution in P2(Rd ) in the sense of Gangbo,
Nguyen, Tudorascu iff its lift U is a viscosity solution in L2

P of
the corresponding equation with H1.

Problems
Even if H is quite nice, H1(X ,Z ) and H2(X ,Z ) are not
continuous on (X ,Z ).
This comes from the fact that: transport plans can be
approximated by transport plans supported on graphs.
The lack of continuity prevents using classical results of
Crandall and Lions.
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Subdifferential in [t0,T [×L2
P

Fréchet Subdifferential
(pt ,Z ) ∈ D−U(t0,X ) if ∀(t ,Y ):

U(t ,Y ) ≥ U(t0,X ) + pt (t − t0) + 〈Z ,Y − X 〉

+o
(√
‖Y − X‖2

L2
P

+ |t − t0|2
)
.

Subdifferentials are plans (J. Marigonda, Quincampoix)

If U is r.i., (pt ,Z ) ∈ D−U(t0,X ) then:

for all (X ′,Z ′) with (X ′,Z ′)]P = (X ,Z )]P : (pt ,Z ′) ∈ D−U(t0,X ′).
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Arguing with plans

L2
P-Subdifferential = AGS-subdifferential

γ = (X ,Z )]P
(pt ,Z ) ∈ D−U(t0,X )⇔ (pt , γ) ∈ ∂−AGSu(t0, µ0).

AGS-subdifferential

(pt , γ) ∈ ∂−AGSu(t0, µ0) if:

For all $(x , y , z) ∈ P2(R3d ) with πx ,z]$ = γ, πy ]$ = ν:

u(t , ν) ≥ u(t0, µ0) + pt (t − t0) +

∫
z · (y − x) d$(x , y)

+o
(√
‖y − x‖2L2

$
+ |t − t0|2

)
.
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New Hamiltonians

Extending Hamiltonians using plans (J.)

Remember H(µ0,p) si defined for µ0 ∈ P2(Rd ) and
p ∈ L2

µ0
(Rd ,Rd )

Set H̃((Id ,p)]µ0) = H(µ0,p).

If H̃ is uniformly continuous /W2, we can extend it to all
plans: H̃(γ).
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A regular Hamiltonian on L2
P (J.)

By construction, H̃ is continuous/W2.
By construction, its lift H̃ is r.i. and continuous/L2.
It is in fact, the only regular extension of H.

Turning back to the example

H(µ,p) := inf
u

{∫
Rd

f (x ,u(x), µ) · p(x) dµ(x)

}
H̃(X ,Z ) = inf

u

{∫
Ω

f (X ,u(X ,Z ),X ]P) · Z dP
}
.

C. Jimenez Rencontre ANR COntrol on Stratified Structures



The Wasserstein Space
A multi-agent optimal control problem

Hamilton-Jacobi in the space of Wasserstein
Extending the Hamiltonian in L2

P in a regular way

Turning back to the example (J.)

H̃(X ,Z ) = inf
u

{∫
Ω

f (X ,u(X ,Z ),X ]P) · Z dP
}
.

The function V is the unique solution in the usual L2
P-sense of:{

∂tU(t ,X ) + H̃(X ,DX U(t ,X )) = 0,
U(T ,X ) = G(X ]P).

Key point: the dynamic programming principle satisfied by V
implies a dpp in L2

P for V .
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Other articles in the same spirit

Cavagnari, Savaré, Sodini, Dissipative probability vector
fields and generation of evolution semigroups in
Wasserstein spaces, 2023
Bertucci, Stochastic optimal transport and
Hamilton-Jacobi-Bellman equations on the set of
probability measures, preprint.
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THE END

Thank you for your attention!
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