Approximation de lois de conservation paramétrées

Nicolas Seguin IMAG, Antenne Inria de l'Université de Montpellier

2e journée de l'ANR COSS, vendredi 22 mars 2024

Collaboration avec

- Clément Cardoën (LMJL, Nantes Université)
- Swann Marx (LS2N, CNRS Nantes)
- Anthony Nouy (LMJL, Centrale Nantes)

Contenu approximatif de l'exposé

- Lois de conservation paramétrées : cadre
- Problème des moments pour des fonctions discontinues
- Solutions à valeurs mesures et moments
- Problème des moments généralisé et hiérarchie de Lasserre
- Quelques exemples numériques
- La suite...

Lois de conservation avec paramètres : définitions

Le but est d'approcher les solutions du problème

 $\begin{cases} \partial_t u(t, x, \xi) + \operatorname{div}_x f(u(t, x, \xi), \xi) = 0 & (t, x, \xi) \in \mathbb{R}_+ \times \mathbb{R}^n \times \Xi \\ u(0, x, \xi) = u_0(x, \xi) & (x, \xi) \in \mathbb{R}^n \times \Xi \end{cases}$

où $\Xi \subset \mathbb{R}^p$ est l'espace des paramètres avec mesure de probabilité ρ .

Cadre

- $u_0 \in L^{\infty}(\Xi, L^{\infty}(\mathbb{R}^n))$
- f est localement bornée et de classe C^1 par rapport à u et ρ -ps

Definition (Solution entropique paramétrique)

ho-ps : fonction $u(\xi) \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^n)$ tq pour tout couple entropique $(\eta, q(\xi))$,

$$\int_{\mathbb{R}_+} \int_{\mathbb{R}^n} \left(\eta(u) \partial_t \varphi + q(u, \boldsymbol{\xi}) \cdot \nabla_x \varphi \right) dx \, dt + \int_{\mathbb{R}^n} \varphi(0, x) \eta(u_0(\boldsymbol{\xi})) \, dx \ge 0$$

for all $\varphi \in C_0^1(\mathbb{R}_+ \times \mathbb{R}^n)^+$.

Lois de conservation avec paramètres : définitions

Définition "affaiblie" :

Definition (Solution entropique paramétrique faible)

Fonction $u \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^n \times \Xi)$ tq pour tout couple entropique $(\eta, q(\boldsymbol{\xi}))$,

$$\int_{\mathbb{R}_{+}} \int_{\mathbb{R}^{n}} \int_{\Xi} \left(\eta(u) \partial_{t} \varphi + q(u,\xi) \cdot \nabla_{x} \varphi \right) d\rho(\xi) \, dx \, dt \\ + \int_{\mathbb{R}^{n}} \int_{\Xi} \varphi(0,x) \eta(u_{0}(\xi)) \, d\rho(\xi) \, dx \ge 0$$

for all $\varphi \in C(\Xi, C_0^1(\mathbb{R}_+ \times \mathbb{R}^n))^+$.

- Si on suppose de plus que $u \in L^{\infty}(\Xi, L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^n))$, alors on a l'équivalence entre les deux notions. [Mishra, Schwab, 2012]...
- Dans ce cas, existence et unicité standard.

Approximation numérique

Difficultés

- Problème non linéaire
- Les discontinuités en x se propagent en ξ
- Minimiser les évaluations par rapport à ξ
- Échec des méthodes d'approximation "classiques"
- Méthodes de type Monte-Carlo : convergence lente
- Extension de méthodes spatiales : lourd...
- lci : tentative exploratoire trèèèès différente issue de

S. Marx, T. Weisser, D. Henrion, J.B. Lasserre *A moment approach for entropy solutions to nonlinear hyperbolic PDEs* Mathematical Control and Related Fields, Vol. 10, 2020

Problème des moments classique

Soit la fonction f à déterminer

$$f \colon X \text{ compact de } \mathbb{R}^{p-1} \longrightarrow Y \text{ compact de } \mathbb{R}$$
$$x = (x_1, \dots, x_{p-1}) \longmapsto y = f(x_1, \dots, x_{p-1})$$

Soit $b_{\alpha}(x,y) = (xy)^{\alpha}$, $\alpha \in \mathbb{N}^{p}$, $|\alpha| \leq d$ (d'autres polynômes sont possibles) et la matrice des moments associée :

$$M_{f,d} := \int_X b(x,f(x))b(x,f(x))^{ op}\,dx.$$

Problème. Connaissant uniquement la matrice des moments $M_{f,d}$, calculer une approximation convergente f_d de f quand $d \to \infty$.

Formulation faible du problème des moments

Idée. Au lieu de la fonction, on cherche à déterminer son graphe

 $G_f := \{(x, y), x \in X, y = f(x)\} \subset X \times Y$

et correspond au support de la mesure (mesure d'occupation)

 $d\mu(x,y) = \mathbf{1}_X(x)dx \ \delta_{f(x)}(dy)$

Alors la matrice des moments devient

$$M_{f,d} = M_{\mu,d} := \int_X b(x,y)b(x,y)^\top d\mu(x,y)$$

 \rightarrow Problème d'optimisation linéaire sur la mesure d'occupation μ

Rq. Si on désintègre la mesure μ , on obtient la mesure de Young $x \mapsto \delta_{f(x)}$.

Nicolas Seguin (Inria Montpellier)

Approximation du graphe

Jean-Bernard Lasserre, Didier Henrion, Édouard Pauwels, Swann Marx...

• Données :

$$M_{\mu,d} := \int_X b(x,y) b(x,y)^\top \ d\mu(x,y)$$

• Noyau de Christoffel-Darboux étendu :

$$q_{\mu,d}(x,y) = b(x,y)^{\top} M_{\mu,d}^{\dagger} b(x,y)$$

- C'est une somme de carrés de polynômes (SOS)
- Ses courbes de niveau approchent le support de μ quand $d
 ightarrow \infty$
- Construction de l'approximation :

$$f_{d}(x) := \min\left\{\arg\min_{y \in Y} q_{\mu,d}(x,y)\right\}$$

Résultat et exemples

S. Marx, E. Pauwels, T. Weisser, D. Henrion, J.-B. Lasserre Semi-algebraic approximation using Christoffel-Darboux kernel Constructive Approximation, Vol. 54, 2021

Convergence en norme L^1 et ponctuelle aux points de continuité de f

Retour aux lois de conservation

Stratégie :

- Application de la méthode, a priori adaptée aux solutions discontinues
- Reformulation du problème initial comme un problème aux moments
 - X et Y doivent être des compacts
 - Passage aux mesures de Young (à la DiPerna)
 - Problème polynomial : flux, entropie, fonctions test...
- Noyau de Christoffel–Darboux et extraction : solution approchée $u_d(t, x, \xi)$ pour tout $(t, x, \xi) \in \mathbf{T} \times \mathbf{X} \times \Xi$

Et maintenant, les détails...

Formulation sur des compacts

Les compacts :

- $\mathbf{T} \times \mathbf{X} \times \Xi = [0,T] \times [-1,1]^n \times [0,1]^p$
- $\mathbf{U} = [-\|u_0\|_{\infty}, \|u_0\|_{\infty}]$

On se restreint à des données initiales u_0 pour éviter toute interaction avec ∂X :

- Soit $\bar{u}_0 \in L^{\infty}(\Xi, L^{\infty}(\mathbb{R}^n))$
- Soit $\bar{u} \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^n \times \Xi)$ la solution entropique paramétrique faible

 $\label{eq:constraint} \textbf{[H]} \ \exists \varepsilon > 0 \ \text{tq} \ \forall (t,\xi) \in \textbf{T} \times \Xi \text{, } \bar{u}(t,\cdot,\xi) = \bar{u}_0(\cdot,\xi) \ \text{sur} \ (\partial \textbf{X} + B(0,\varepsilon)) \cap \textbf{X}$

Le problème mixte

- Solution entropique paramétrique faible
- Données initiales : $u_0 = \overline{u}_{0|X}$ où \overline{u}_0 vérifie [H].
- Condition de Dirichlet au bord ∂X :
 - On suppose que la trace $\gamma(u_0)$ sur ∂X existe
 - On impose $u = \gamma(u_0)$ sur $\mathsf{T} \times \partial \mathsf{X} \times \Xi$

Solutions à valeur mesure entropique paramétrique

On cherche

$$\mu \colon \mathbf{T} \times \mathbf{X} \times \Xi \longrightarrow \mathcal{M}_{+}(\mathbf{U})$$
$$(t, x, \xi) \longmapsto \mu_{(t, x, \xi)}$$

tel que pour tout couple entropique $(\eta, q(\xi))$ et $\varphi \in C(\Xi, C^1(\mathbf{T} \times \mathbf{X}))^+$,

$$\begin{split} \int_{\mathsf{T}} \int_{\mathsf{X}} \int_{\Xi} \left[\partial_t \varphi \left\langle \mu_{(t,x,\xi)} \mid \eta \right\rangle + \nabla_x \varphi \cdot \left\langle \mu_{(t,x,\xi)} \mid q(\xi) \right\rangle \right] d\rho(\xi) \, dx \, dt \\ &+ \int_{\mathsf{X}} \int_{\Xi} \varphi_{\mid t=0} \left\langle \delta_{u_0} \mid \eta \right\rangle \, d\rho(\xi) \, dx - \int_{\mathsf{X}} \int_{\Xi} \varphi_{\mid t=T} \left\langle \mu_{(T,x,\xi)} \mid \eta \right\rangle \, d\rho(\xi) \, dx \\ &- \int_{\mathsf{T}} \int_{\partial\mathsf{X}} \int_{\Xi} \varphi \left\langle \delta_{\gamma u_0} \mid q(\xi) \right\rangle \cdot n_{\partial\mathsf{X}} \, d\rho(\xi) \, d\sigma(x) \, dt \ge 0. \end{split}$$

"Extension" de la définition de [DiPerna 1985] (+ [Otto 1996], [Panov 2011]...)

Nicolas Seguin (Inria Montpellier)

Vers un problème sur les moments : une mesure globale

Soit $\mathbf{K} = \mathbf{T} \times \mathbf{X} \times \Xi \times \mathbf{U}$. On définit $\nu \in \mathcal{M}_+(\mathbf{K})$ par

 $d\nu(t, x, \xi, y) = dt \ dx \ d\rho(\xi) \ \mu_{(t, x, \xi)}(dy)$

On peut alors réécrire les inégalités précédentes sur ν comme : Pour tout couple entropique $(\eta, q(\xi))$ et $\varphi \in C(\Xi, C^1(\mathbf{T} \times \mathbf{X}))^+$,

 $\mathscr{G}(\varphi, \boldsymbol{\nu}, (\eta, q)) \geqslant 0$

(On omet la dépendance aux données initiale et au bord)

Rq. On peut en déduire la loi de conservation : pour tout $\psi \in C(\Xi, C^1(\mathbf{T} \times \mathbf{X}))$,

 $\mathscr{G}(\psi, \nu, \mathrm{id}, f) = 0.$

Problème. Comment en déduire la matrice des moments de ν ?

Nicolas Seguin (Inria Montpellier)

Le problème des moments généralisé (GMP)

Moments de
$$\nu$$
 : $\mathbf{m}_{\alpha} = \int_{K} X^{\alpha} d\nu, \quad \alpha \in \mathbb{N}^{n}$

GMP : problème d'optimisation linéaire de dimension infinie

- $K := \{X \in \mathbb{R}^n; k_1(X) \ge 0, \dots, k_m(X) \ge 0\}$
- Inconnue(s) : mesure(s) de Borel $\nu \in \mathscr{M}(K)_+$
- Fonctionnelle dépendant des moments de ν :

$$\inf_{\nu \in \mathscr{M}(K)_{+}} \int_{K} p_{0} \, d\nu$$

• Sous contrainte sur les moments de u : $k = 1, 2, \dots, p_k \in \mathbb{R}[X]$

$$\int_{K} p_k \ d\boldsymbol{\nu} \leqslant b_k, \quad k = 1, 2, \dots$$

Nicolas Seguin (Inria Montpellier)

 $k_i \in \mathbb{R}[X]$

 $p_0 \in \mathbb{R}[X]$

Reformulation sur les moments

Moments de
$$\nu$$
 : $\mathbf{m}_{\alpha} = \int_{K} X^{\alpha} d\nu$, $\alpha \in \mathbb{N}^{n}$
Soit $p \in \mathbb{R}[X]$. On note $p = \sum_{\alpha \in \mathbb{N}^{n}} p_{\alpha} X^{\alpha}$. Alors

$$\int_{K} p \, d\nu = \sum_{\alpha \in \mathbb{N}^{n}} p_{\alpha} \mathbf{m}_{\alpha} =: \ell_{\mathbf{m}}(p)$$

Théorème de Riesz-Haviland (1923-36)

Le **GMP** est équivalent au problème linéaire sur les moments $(\mathbf{m}_{\alpha})_{\alpha}$

$$\begin{split} \inf_{\mathbf{m}\in\mathbb{R}^{\mathbb{N}^n}} \ \ell_{\mathbf{m}}(p_0) \\ \text{tel que } \ell_{\mathbf{m}}(p_k) \leqslant b_k, \quad k = 1, 2, \dots \\ \ell_{\mathbf{m}}(p) \geqslant 0 \text{ pour tout } p \in \mathbb{R}[X] \text{ positif sur } K \end{split}$$

Hiérarchie de Lasserre

Jean-Bernard Lasserre Moments, Positive Polynomials and Their Applications. Imperial College Press, Covent Garden, London, UK (2009)

Troncature convergente du GMP

- Putinar's Positivstellensatz & sommes de carrés Reformulation de la contrainte $\ell_m(p)$, $p_{|K} > 0$
- Matrice de localisation (moments d'ordre d pondérée par (k_j))
 Troncature de la contrainte l_m(p), p_{|K} > 0
- $d \rightarrow +\infty$: Convergence vers un minimiseur du GMP
- Fonction de Christoffel-Darboux Si $\nu = \delta_{f(X)}$, reconstruction de f possible

[Marx, Weisser, Henrion, Lasserre 2020] Application à l'Équation de Burgers

Retour sur les lois de conservation paramétrées

On cherche $\nu \in \mathcal{M}_+(\mathsf{K})$ qui vérifie $\mathscr{G}(\varphi, \nu, (\eta, q)) \ge 0$.

Problème des moments généralisé

- $\mathbf{T} = \{t(T-t) \ge 0\}$, idem pour X et U
- Famille de polynômes positifs $\{\varphi^{\alpha}\}_{\alpha\in\mathscr{F}}$, $\mathscr{F}\subset\mathbb{N}^{n+p+1}$
- Flux polynomial en y (Burgers, LWR...)
- Couples entropiques, au choix :
 - Entropies de Kruzhkov $\eta(y) = |y \kappa| = \begin{cases} y \kappa & \text{si } y \ge \kappa \\ \kappa y & \text{si } y \le \kappa \end{cases}$
 - Une seule entropie convexe $\eta(y) = y^2 \dots ??$?
- On ajoute $\mathscr{G}(\psi^{\alpha}, \nu, \mathrm{id}, f) = 0$, où $\{\psi^{\alpha}\}_{\alpha \in \mathbb{N}^{n+p+1}}$ est une base de polynômes
- Fonctionnelle à minimiser "quelconque" : trace de la matrice des moments

Reconstruction des quantités d'intérêt

Hiérarchie de Lasserre

- \longrightarrow Approximation des moments de la mesure ν
- \longrightarrow Mesure u dont le support est le graphe de $(t,x,\xi)\mapsto u(t,x,\xi)$

Application du noyau de Christoffel-Darboux

• Récupération d'une approximation de $u(t,x,\xi)$ pour tout $(t,x,\xi) \in \mathsf{K}$

Moments statistiques de la solution

- Estimation à partir de l'approximation de u
- Calcul direct possible via une hiérarchie de Lasserre alternative

Résultats numériques

- Équation de Burgers + position du pb de Riemann dépendant de ξ
- Équation de Burgers avec $f(u,\xi) = (\xi+1)u^2/4$, $\xi \in [0,1]$.
- Gloptipoly 3 [Henrion, Lasserre, Lofberg 2007]

Nicolas Seguin (Inria Montpellier)

Cas à paramètre fixé

Nicolas Seguin (Inria Montpellier)

Cas à temps fixé

Erreur globale en fonction du degré

Nicolas Seguin (Inria Montpellier)

Lois de conservation paramétrées

21 / 26

Répartition de l'erreur

Fig. 4: Graph of the error $\varepsilon(t, x) = |\widetilde{u_5}(t, x, 0.2) - u(t, x, 0.2)|$

Nicolas Seguin (Inria Montpellier)

Flux paramétré

Flux paramétré : convergence

Nicolas Seguin (Inria Montpellier)

Lois de conservation paramétrées

24 / 26

Conservation imposée ou pas

Conclusion

- Méthode numérique sans maillage
- Approximation des solutions à valeurs mesure (avec unicité)
- Problème d'optimisation linéaire
- Résolution globale sur $\mathbf{T} \times \mathbf{X} \times \Xi$
- Algorithme lent et sensible (malédiction de la dimension)
 - Autres algorithmes...
- Structure de la matrice des moments?
 - [Mula, Nouy 2022], travail en cours pour le transport...
- Autre chose que le problème de Cauchy?
 - Autres EDP plus faciles...