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Prerequisites / terminology :

Scalar Conservation Law (SCL):

∂tu + ∂x f (u) = 0 + Initial Condition (IC)

[Kruzhkov’70] notion of entropy solution (x in the whole space)
well-posedness for L1 ∩ L∞ IC, including the L1 contraction

‖u(t , ·)− û(t , ·)‖L1
x
≤ ‖u0 − û0‖L1

x

Entropy solution ≡ limit of Vanishing Viscosity approximations.

Riemann problems are Cauchy problems for pure-jump IC.
They are building blocks for theory / for numerical schemes.
Riemann solver = procedure or formula for solving Riemann pbs.

[Godunov’59] Godunov flux, derived from the Riemann solver :
an influential tool in Finite Difference / Finite Volume schemes

In God(unov) we trust
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Network of roads. Well-posedness for wide families of node conditions?

Traffic on network:
m incoming roads
n outgoing roads
focus at a junction (node)

The problem structure:
On each ray (road) : a classical, well-understood PDE,
either SCL (Scalar conservation law) or HJ (Hamilton-Jacobi)
At the node, a specific condition (node coupling / transmission)

Goals:
address many node conditions within a common formalism
benefit from abstract structures behind the problem
relate/discriminate SCL and HJ -based models of network traffic
cf. [Cardaliaguet-Forcadel-Girard-Monneau ’24]
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Example from porous media
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Example: Buckley-Leverett equation as vanishing capillarity limit

Two-rock 1− 1 junction: Buckley-Leverett equation
in 1D medium made of two rocks with distinct physical properties

∂tu + ∂x fR(u) = 0∂tu + ∂x fL(u) = 0

x

t

Trace uL(t)

∂tu + ∂x
(
fL(u)1Ix<0 + fR(u)1Ix>0

)
= 0

(
= ε∂x(λR(u)∂xπR(u))

)

Trace uR(t)

(
= ε∂x(λL(u)∂xπL(u))

)
Coupling: RH +

continuity of pressure

NB: the nonlinearities πL,R (capillary pressures) and λL,R
enter the model for ε > 0 but don’t enter the limit model
⇒ how the Interface Coupling can keep memory of πL,R , λL,R ?
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Different Interface Coupling Conditions lead to different solutions

ε = 0: Simulations for a constant initial condition and given fL,fR

(a) Numerical solution for constant datum (b) Another numerical solution, same datum

Only difference between the two models:
different choice of capillary pressure profiles πL, πR

; different interface (node) condition
; different node Riemann solver

Can be seen as a class of models: common well-posedness theory.
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Laplacian : Classic BC & Monotonicity
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Classic BC for evolution equations in divergence form (think Laplacian)

A starter: evolution PDE in divergence form on 1− 0 network
≡ classic Boundary-Value Problem paradigm

t

x

Domain boundary

Trace u(0, t)

Trace F [u](0, t)

{
∂tu + ∂xF [u] = 0, x < 0
+BC x = 0−

(F [u] denotes the flux)

[entropy] solution

Boundary condition

prescribing
(
u(0, .),F [u](0, .)

)

Think of F [u] = −∇u (the standard Laplacian)...
...later, we’ll rather think of SCL, with F [u] = f (u) !
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Classic BC: monotonicity!

Trace de F [u] Trace de F [u]

Trace de u Trace de u

CB Dirichlet CB zero-flux

Trace de F [u] Trace de F [u]

Trace de u Trace de u

CB obstacleCB Robin

In all cases,
(
u,F [u] · n

)
∈ β for some maximal monotone graph β
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Monotonicity... monotonicities?

Think of the PDE ∂tu + div F [u] = 0 + the BC
(
u,F [u] · n

)
∈ β

A graph β ⊂ R× R is monotone if

for all pair (u,F ), (û, F̂ ) ∈ β any of the following holds
(u − û) (F − F̂ ) ≥ 0

sign (u − û) (F − F̂ ) ≥ 0

. . . we’ll see one more version later one

Monotonicity ; stability and uniqueness of solutions:
in L2, for the 1st version above
(taking (u − û) for test function in the PDE)

in L1, for the 2nd version
(taking sign (u − û) for test function in the PDE)

in Lp, for further versions of monotonicity and appropriate test fcts

A monotone graph is maximal monotone
if it admits no non-trivial monotone extension
Maximality ; belief in / hope for solutions’ existence
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Scalar conservation law:

Bardos-LeRoux-Nédélec revisited
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Dirichlet BC for conservation law ; Bardos-LeRoux-Nédélec

Dirichlet BC for the Laplacian:
While the trace of u is prescribed to a given value uD ,

the trace of F [u] · n = −∂u/∂n is free
; wide enough choice for solutions’ existence

Dirichlet BC for SCL:
When the trace of u is prescribed to a given value uD ,

the trace of F [u] · n = f (u) · n is automatically prescribed
; overdetermined problem, non-existence for most of data

BLN relaxation: [Bardos-LeRoux-Nédélec ’79]
a rule, derived from analysis of Vanishing Viscosity approximation, prescribes
a set I(uD) of values for the trace of u that is considerably larger than {uD}
; existence, uniqueness for the relaxed problem

Reinterpretation: [Dubois-LeFloch ’89]
the BC graph β is projected on the graph of f · n

Practical use, generalization: [A., Sbihi ’06, ’08, ’15]
· The BLN relaxation /projection procedure can be described

using the marvelous tool of Godunov function
· It can can be applied to any maximal monotone BC graph β
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Dirichlet BC for conservation law ; Bardos-LeRoux-Nédélec

BLN1 plus.png
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Visualization of BLN. Monotonicity. Godunov projection.

Structure of the projected graph: [A.-Sbihi’15]

β̃ is the closest to β maximal monotone subgraph of f · n︸ ︷︷ ︸
call it “canonical graph”

“Godunov representation” of β̃
The Godunov function can be used to encode the presence of boundary layer
(passage from the true trace u to the “desired trace” ũ):

God(a, b) =
{

min[a,b] f · n , if a ≤ b
max[b,a] f · n , if b ≤ a

β̃ =
{
(u,F )

∣∣∣ ∃(ũ,F ) ∈ β s.t. f (u) · n = God(u, ũ) = F
}

Dicihlet case β = {uD} × R:
the domain of β̃ is the Bardos-LeRoux-Nédélec set I(uD)... call it “germ”!
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Interface Coupling Conditions & Monotonicity
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Examples for the Laplacian: Kirchhoff and Kedem-Katchalsky

Think of ∂tu + div F [u] = 0, F [u] = −∇u (the Laplacian)
with inner interface Γ = {x1 = 0}

Kirchhoff coupling:{
u|x1=0− = u|x1=0+ continuity of u on Γ
F [u] · n−|x1=0− + F [u] · n+|x1=0+ = 0 flux conservativity on Γ

Well-known fact: Kirchhoff coupling ⇐⇒ the inner interface is “fake”

Kedem-K. coupling: [Kedem-Katchalsky ’58],[Guarguaglini-Natalini]{
F [u] · n−|x1=0− = C

(
u|x1=0− − u|x1=0+

)
a membrane condition on Γ

F [u] · n+|x1=0+ = −C
(
u|x1=0− − u|x1=0+

)
(including flux conservativity)

Condensed notation: one-sided traces uL,R , FL,R fulfill

Kirchhoff Kedem-Katchalsky{
uL = uR
FL + FR = 0

{
FL = C(uL − uR)
FR = −C(uL − uR)

In both cases, solutions fulfill
(
(uL,uR), (FL,FR)

)
∈ graph in R2 × R2
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Kirchhoff / Transmission map / Flux limitation for SCL on 1—1 junction

Now, think of ∂tu + ∂x F [u] = 0, F [u] = f (u) (the SCL)
with inner interface Γ = {x = 0}

Condensed notation:
· one-sided (desired) traces uL,R of the solution
· one-sided (desired) normal traces FL,R of the flux

Kirchhoff [A.-Karlsen-Risebro’11] Transmission maps [A.-Cancès’15]{
uL = uR
FL + FR = 0

{
πL(uL) = πR(uR)
FL + FR = 0

“fake” interface porous medium applic. (“2-rocks”)
solution is globally Kruzhkov πL,R capillary pressure profiles

Flux limitation ICC: [Colombo-Goatin’07],[A.’15], traffic applications{
uL = uR
FL + FR = 0, FL ≤ Flim

OR
{

uL > uR
FL = Flim = −FR

In all cases, what is called "solutions" in the above works fulfill(
(uL,uR), (FL,FR)

)
∈ “BLN-like” projected graph in R2 × R2
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Framework of Node Coupling Conditions. Monotonicity...?

Network: incoming branches Ω1, . . . ,Ωm
outgoing branches Ωm+1, . . . ,Ωm+n
fluxes F`[·] on Ω`, ` = 1, . . . ,m + n

Node Coupling Condition:
· one-sided traces ~u =

(
u1, , . . . , um+n

)
of the solution

· one-sided normal traces ~F =
(
F1, , . . . ,Fm+n

)
of the fluxes F`[u] · n`

· a (maximal monotone?) graph β ⊂ Rm+n × Rm+n

Node Coupling encoded by
(
~u , ~F

)
∈ β

Monotonicity ? Depending on the uniqueness technique in use,

for all pair
(
~u, ~F

)
,
(
~̂u, ~̂F

)
∈ β ask one of the following:∑m+n

`=1 (u` − û`) (F` − F̂`) ≥ 0 (2-monotonicity)∑m+n
`=1 sign max(u` − û`) (F` − F̂`) ≥ 0 (1-monotonicity)

. . .∞-monotonicity ? a CoSSy possibility !
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“L1D germs” theory for SCL recast into the ICC terminology

Interpretation of ICC vision in terms of [A.-Karlsen-Risebro’11]

1. BLN-like projection:
· The graph β is projected (description in terms of Godunov function)
· The BLN/Godunov projection ·̃ : β → β̃ preserves monotonicity/ies

2. Germ = Domain of the projected graph:
· The projected graph β̃ is fully determined by its domain

(we have F` = ±F`(u`) with “+” on incoming, “−” on outgoing branches)

· call Dom(β̃) “germ”, denote in Gβ
· 1-monotonicity of β̃ ⇐⇒ L1D property of the germ Gβ

3. Maximality & Riemann problems:
· Maximality of the projected graph β̃ is inclear even if β is maximal

· The right property is completeness of the germ Gβ ,
i.e., the ability to solve every Riemann problem at the node

Conclusion: Assume β is 1-monotone and defines a Riemann solver,
Gβ is maximal L1D ; germs-based well-posedness theory applies
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Main objects: node Riemann solver / node Godunov flux / node germ.

1. Node Riemann problem: Given ~r =
(
r1, . . . , rm+n

)
, find

(
~u, ~F

)
∈ β s.t.{

for 1 ≤ i ≤ m Godi(ri , ui) = Fi

for m + 1 ≤ i ≤ m + n Godj(uj , rj) = −Fj

· resolution is an intricate, β-dependent procedure!
· existence of a solution for all ~r means completeness for the germ
· monotonicity of β implies that the component ~F (fluxes)

of the solution is uniquely defined (while ~u may be non-unique)

2. Node Godunov flux Godβ:
If the above problem has a solution, this defines a map,

Godβ : Rm+n → Rm+n, ~r 7→ ~F

where ~F is the 2nd component of a solution (~u, ~F ) ∈ β in 1..

3. Node germ Gβ is the set of equilibria of the Riemann solver,

i.e., Gβ is the set of all ~r ∈ Rm+n, which means that{
for 1 ≤ i ≤ m fi(ri) = Godi(ri , ui) = Fi

for m + 1 ≤ i ≤ m + n fj(rj) = Godj(uj , rj) = −Fj

where ~F = Godβ(~r) is obtained in 1.&2.
4. The projected β̃ ? Like in BLN, β̃ fully determined by its domain Gβ !
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Basics of the well-posedness theory with ICC β

Definition 1 of solution
A solution is a function defined on the network, being per-branch Kruzhkov
entropy solution, and which traces at the node are in the germ Gβ .

Uniqueness for Definition 1: just like [A.-Karlsen-Risebro’11]
1-Monotonicity of β ; L1-dissipativity of Gβ
; interface terms reinforce the Kruzhkov contraction ; uniqueness

Definition 2 of solution, existence
A solution is a function defined on the network, satisfying adapted entropy
inequalities (Kruzhkov’s k ∈ R replaced by per-branch constants ~k ∈ Gβ).

Existence for Definition 2: like [A.-Cancès’15],[A.-Coclite-Donadello’17]
· Definition of Godunov functions God`
; existence of profiles (viscous, numerical...) with endpoints ~k ∈ Gβ
· Contraction between approx. solutions & profiles

+ compactness of approximations ; uniqueness

Def. 2 =⇒ Def. 1 =⇒ Def. 2: like [A.-Karlsen-Risebro’11]
· Completeness of Gβ ; maximality of Gβ ; “‘Def 2. ⇒ Def 1.”
· ∃ for Def 2. + “Def. 2⇒ Def. 1” + ! for Def. 1 =⇒ equivalence of Defs.
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Examples: standard (Kirchhoff) VV on networks ; Transmission maps

Vanishing Viscosity on networks: [A.-Coclite-Donadello’17]
The ICC is mere Kirchhoff, given by

β =
{
(~u, ~F )

∣∣∣ u1 = · · · = um+n,
∑m+n
`=1 Fi = 0

}
Solving Riemann problems: given ~r , find a value p ∈ R s.t.∑m

i=1 Godi(ri , p)−
∑m+n

j=1 Godj(p, ri) = 0

a scalar monotone equation on p ; solution found with dichotomy method

Transmission maps: [A.-Cancès’15], for the 1− 1 junction
Given increasing capillary pressure profiles πL,R , the ICC is given by

β =
{(

(uL, uR), (FL,FR)
) ∣∣∣πL(uL) = πR(uR), FL + FR = 0

}
Solving Riemann problems⇐⇒ solving a scalar equation
involving monotone functions/graphs GodL,R and π−1

L,R .

Nonconservative coupling: [A.-Seguin’12],[A.’15]
Formalism does not require conservativity, it can be applied e.g. to the
Burgers-particle model of [Lagoutière-Seguin-Takahashi’07]
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A new example: Velocity Limitation in road traffic

Velocity limitation on 1− 1 junction: [A.-Rosini’25++?]
Question to [Colombo-Goatin’07] flux-limited model:

Why not velocity limitation ?

Formal velocity limitation ICC:

β =
{
(u, u,F ,−F ) | u arbitrary, F ≤ Vlim u

}
(classical Kirchhoff part)⋃ {

(uL, uR ,F ,−F ) | uL > uR , F = Vlim uL

}
(non-classical part)

NB: This includes modeling assumptions (Rosini)

Calculations ; BLN-like projection β̃.
The projection turns out to be the same as for the flux limitation,
at some level Flim depending on Vlim and of f !

Conclusion:
By a BLN-like mechanism, velocity limitation amounts to a flux limitation
Conclusion supported by micro-macro (Follow-the-Leader) hydrodynamic
limit numerics [A.-Rosini’19] and analysis [Storbugt’24]
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Kedem-Katchalsky node conditions on networks: first results.

The starting-point results
Following [Guarguaglini-Natalini] for Kedem-Katchalski coupling in parabolic
case, [Coclite-Donadello’20] prove:

Existence of KK-VV approximations ( = KK coupling at the viscous level)

Compactness of approximations as the viscosity parameter tends to 0+

L1 contraction at the level of the viscous problem

; the KK-VV limits form one (or many) L1 contractive semigroups.

Question:
· Characterize the KK-VV limits intrinsically
· Prove uniqueness (intrinsic uniqueness / uniqueness of the KK-VV limit)

Failed attempts:

· the language of connections [Adimurthi-Mishra-Gowda’05]
· the language of flux limitation [Colombo-Goatin,...]
seem inappropriate (cf. [Monneau, private comm.])

explicit calculations of germ are painful++ even in simple cases
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Kedem-Katchalsky node conditions on networks: completing the study.

Summary of the result [A.-Coclite-Donadello’24+?]

ICC description of KK conditions ; BLN-kind Godunov projection framework
; Node Riemann solver, Node Godunov flux, Node germ

; intrinsic characterization of KK-VV limits & well-posedness

Key ingredient: abstract resolution of Riemann problems
· Given ~r a Riemann datum at the node, rewrite the system as

(β + γ~r ) u 3 0

γ~r : u 7→
(
+God1(r1, u1), . . . . . . ,−Godm+n(um+n, rm+n)

)
· Observe γ~r is a (completely) monotone and Lipschitz graph

· Using the theory of m-accretive operators [Bénilan, Crandall, Pazy], solve

(δId + β + γ~r ) uδ 3 0

· Pass to the limit δ → 0+ in uδ using uniform bounds (due to T -accretivity)

Result: Consider SCL on network with (formal) Node Coupling.
Coupling prescribed by a maximal 1-monotone1 graph β ⊂ Rm+n × Rm+n

; the limit of β-VV approximations is the unique Gβ solution
; monotone Finite Volume schemes with Godβ flux at the node converge to it

1OK for a wide class of Kedem-Katchalski couplings!
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Conclusion and open question
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Conclusions, and a very CoSSy open question

Formalism of ICC encompasses and unifies the
· the BLN theory of boundary-value problems and its extension
· the L1D germs’ theory of discontinuous-flux conservation laws
· a part of works about network coupling

The key property for the analysis is the 1-monotonicity of underlying ICC
Node Riemann solver / Node Godunov flux are the key objects
Objects hard to compute explicitly (resolution of a highly nonlinear,
non-smooth k × k system) ; but abstract [Bénilan et al.] arguments apply

Open:Can the 1-monotonicity be replaced by a different monotonicity ?
Can the∞-monotonicity structure be exploited ?

Node Riemann solver well defined for ANY monotonicity notion
Only 1-monotonicity is compatible with the Kruzhkov L1-dissipativity
∞-monotonicity is different from 1-monotonicity !
∞-monotonicity is the abstract structure of HJ [Caselles],. . .
HJ framework requires scalar Node Hamiltonian (F , not ~F )
; total flux redistribution as an example, at crossroads of SCL/HJ ?
[Cardaliaguet-Forcadel-Girard-Monneau’24+] ; CoSS discussion ?
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Merci !

Thank you

for your attention!
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