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First order Mean Field Games: Euclidean setting

The Mean Field Games model was proposed by Lasry-Lions in 2006 for
describing interactions among a very large (“infinite”) number of,
indistinguishable and individually negligible, agents when individual actions
are related to mass behaviour and vice versa.

Model example: Rd

The generic player, starting at point x ∈ Rd at time t, chooses the best
trajectory γ so to minimize the cost∫ T

t

[
|γ′(s)|2

2
+ ℓ[m(s)](γ(s), s)

]
ds + G [m(T )](γ(T )),

where m(s) is the distribution of the population at time s.
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MFG system
(HJ) −ut +

1
2 |∇u|2 − ℓ[m(t)](x , t) = 0 (x , t) ∈ (0,T )× Rd

(C ) mt − div (m∇u) = 0 (x , t) ∈ (0,T )× Rd

u(T , x) = G [m(T )](x) x ∈ Rd

m(0, x) = m0(x) x ∈ Rd

where m0 is the initial distribution of agents: m0 ≥ 0,
∫
Rd m0dx = 1.

The first equation is a Hamilton-Jacobi equation for the value
function u for a generic player.
The second equation is a continuity equation for the density m of the
population.

Theorem [PL Lions] (see also Cardaliaguet)

There exist u ∈ W 1,∞
loc ([0,T ]× Rd) and m ∈ C ([0,T ];P1(Rd)), bounded,

such that

-) u solves (HJ) in the viscosity sense

-) m solves (C) in the sense of distributions.
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AIM

Our aim is to study some classes of first order MFG when the dynamics of
the agents take place in a network G.

A network is a connected set G formed by a set of vertices V := {vi}i∈IV
and a set of edges E := {Ji}i∈IJ connecting the vertices. We assume that
G is embedded in Rd and that any two edges can intersect only at a vertex.

(a) An example of network
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Literature for 1st order MFG

MFG on Euclidean spaces
▶ classical approach

⋆ P.L. Lions’ lectures at Collège de France 2012 - Cardaliaguet “Notes on
Mean Field Games”

⋆ Cardaliaguet, DGA 2013

▶ Lagrangian approach for state constraints
⋆ Benamou-Carlier, JOTA 2015
⋆ Cannarsa-Capuani, Springer-Indam, 2018
⋆ Cannarsa-Capuani-Cardaliaguet, ME 2019 & CVPDE 2021
⋆ Mazanti-Santambrogio, M3AS 2019

MFG on graphs (finite number of states)
▶ Gomes-Mohr-Souza, JMPA 2010 & AMO 2013

MFG on networks (2nd order case)
▶ Camilli-Marchi, SIAM JCO 2016
▶ Achdou-Dao-Ley-Tchou, NHM 2019 & CVPDE 2020

MFG on networks (1st order MFG and Wardrop equilibrium)
▶ Gomes et al. preprint
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Control on the velocity – star shaped network

Star shaped network

For simplicity, consider a network G with N semi-infinite straight edges
(Ji )i=1,...,N glued at the origin O. The edge Ji is the closed half-line R+ei .
The vectors ei are two by two distinct unit vectors.

(b) A star shaped network
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Cost for a generic player

The state space is G. The generic player aims at minimizing the cost

J(x , t, γ′) =

∫ T

t

[
|γ′(s)|2

2
+ ℓ[m(s)](γ(s), s)

]
ds + G [m(T )](γ(T ))

where

ℓ[m](x , s) =
N∑
i=1

ℓi [m](x , s)1x∈Ji\{O} + ℓO [m](s)1x=O

G [m](x) =
N∑
i=1

Gi [m](x)1x∈Ji\{O} + GO [m]1x=O

and

ℓO [m](s) = min{ℓ∗[m](s), min
i=1,...,N

ℓi [m](O, s)}

GO [m] = min{G∗[m], min
i=1,...,N

Gi [m](O)}.
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Main issues

The running cost ℓ and the final cost G may be not continuous in O.

The distribution of players may develop a singularity for any t > 0.
This singularity may move in the network.

Example. Consider G = J1 ∪ J2, m0 = 1 on [0, 1]J2, G = 0 and ℓ is

JJ11 JJ22

ll11

ll22

ee11 ee22
OO

llOO

(c) A development of singularity

Consequence

We follow a Lagrangian approach.
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Notations.

Γ = {γ ∈ W 1,2(0,T ;Rd) : γ(·) ∈ G}, Γ[x ] = {γ ∈ Γ : γ(0) = x}
P(Γ) = {Borel probability measures on Γ}
∀t ∈ [0,T ], the evaluation map is et : Γ → G with et(γ) = γ(t)
Pm0(Γ) = {η ∈ P(Γ) : e0#η = m0}
to each η ∈ Pm0(Γ), we associate the cost

Jη(t, x , γ′) =

∫ T

t

[
|γ′(s)|2

2
+ ℓ[es#η](γ(s), s)

]
ds + G [eT#η](γ(T ))

and the corresponding set of optimal trajectories

Γη[x ] =
{
γ ∈ Γ[x ] : Jη(0, x , γ′) ≤ Jη(0, x , γ̃′) ∀γ̃ ∈ Γ[x ]

}
.

Lemma (Existence of optimal trajectories)

For any η ∈ Pm0 (Γ) and x ∈ G, ∃ an optimal trajectory starting at x .

Lemma (Approximation of admissible trajectories)

Let xn → x and γ ∈ Γ[x]. Then, ∃γn ∈ Γ[xn] such that

γn → γ unif., γ′
n → γ′ in L2, lim

n→∞
Jη(0, xn, γ

′
n) = Jη(0, x , γ′).
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Definition

A measure η ∈ Pm0(Γ) is a MFG equilibrium for m0 if

supp(η) ⊂
⋃

x∈supp(m0)

Γη[x ].

(Recall: Γη[x] = {γ ∈ Γ[x] : Jη(0, x , γ′) ≤ Jη(0, x , γ̃′) ∀γ̃ ∈ Γ[x]}.)

Theorem 1 (Existence of a MFG equilibrium)

Assume

m0 ∈ P(G) has compact support

ℓi [·] : P(G) → C 0(G × [0,T ]) are bounded and continuous

Gi [·] : P(G) → C 0(G) are bounded and continuous

for i = ∗, 1, . . . ,N.
Then, there exists a MFG equilibrium η associated with m0.
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Proof (sketch)
Following the Lagrangian approach of Cannarsa-Capuani, we introduce the
multivalued map: for a suitable compact subset K of Pm0(Γ),

E : K ⇒ K

E (η) =

η̂ ∈ Pm0(Γ) : supp(η̂) ⊂
⋃

x∈supp(m0)

Γη[x ]


and we apply Kakutani fixed point Theorem to obtain a MFG equilibrium.
To this end, we have to prove

a) ∀η ∈ K, E (η) is a nonempty set

b) ∀η ∈ K, E (η) is a convex subset of K
c) the map E fulfills the closed graph property.
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For C sufficiently large, we consider the compact set

K = {η ∈ Pm0(Γ) : supp(η) ⊂ {γ : ∥γ′∥2 ≤ C , ∥dist(γ(·),O)∥∞ ≤ C}}.

Step 1. ∀η ∈ K, E (η) is a nonempty convex set.
Step 2. E fulfills the closed graph property:

if ηn ∈ K with ηn → η and η̂n ∈ E (ηn) with η̂n → η̂, then η̂ ∈ E (η).

Disintegration theorem for η̂:∫
Γ
f (γ)η̂(dγ) =

∫
G
(

∫
Γ[x]

f (γ)η̂x(dγ))m0(dx).

Kuratowski convergence theorem: ∀γ ∈ suppη̂x , ∃{γn}n with
γn ∈ suppη̂n and γn → γ unif.. Hence:
γn ∈ Γη

n
[γn(0)] and γn(0) → γ(0) = x .

The multivalued map (x , η) 7→ Γη[x ] has the closed graph property:
γ ∈ Γη[x ].

C. Marchi (Univ. of Padova) 1st order MFGs on networks Paris, Mars 17th, 2023 13 / 22



Theorem 2 (Lipschitz continuity of optimal trajectories)

Assume ℓi [m](·, t), Gi [m](·) ∈ C 2(Ji ) with

∥ℓi [m](·, t)∥C2(Ji ), ∥Gi [m](·)∥C2(Ji ) ≤ K ∀t ∈ [0,T ],m ∈ P(G).

Then, for any MFG equilibrium η, there holds

∥γ′∥∞ ≤ V ∀γ ∈ Γη[x ]

where V is a constant depending only on G, K and |x − O|.
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Proof (sketch)
Consider γ ∈ Γη[x ].

Case 1. γ is inside an edge: Euler-Lagrange condition. If γ ∈ Ji \ {O}
in (t1, t2), then γ′′(t) = ∂xℓi [et#η](γ(t), t) in (t1, t2).

Case 2. γ ends inside an edge: trasversality condition. If
γ(T ) ∈ Ji \ {O}, then γ′(T ) = −∂xGi [eT#η](γ(T )).

Case 3. γ occupies twice O. If γ(t1) = γ(t2) = O with t1 ̸= t2, and
γ(t) ∈ Ji \ {O} for t ∈ (t1, t2) then ∃t∗ ∈ (t1, t2) s.t. γ

′(t∗) = 0.

Case 4. γ starts inside an edge. If x ∈ Ji \ {O}, then |γ′(0)| ≤ C for
a constant C depending only on |x − O|.
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Definition

A couple (u,m) is a mild solution to the MFG if there exists a MFG
equilibrium η ∈ Pm0(Γ) such that

m(t) = et#η ∀t ∈ [0,T ]

u is the value function associated to η:

u(t, x) = inf
γ adm.

Jη(t, x , γ′).

Corollary (Existence and regularity of a mild solution)

Under the assumptions of Theorem 1

(i) There exists a mild solution (u,m) to the MFG.

Moreover, under the assumptions of Theorem 2

(ii) m belongs to Lip(0,T ;P(G))
(iii) u is locally Lipschitz continuous in G × (0,T ).

C. Marchi (Univ. of Padova) 1st order MFGs on networks Paris, Mars 17th, 2023 16 / 22



Proof (sketch)

(i) is an immediate consequence of Theorem 1.

(ii) is obtained following the same arguments of Theorem 1 and taking
advantage of Theorem 2.

(iii) (a) Lipschitz continuity in space (using competitor)
(b) local Lipschitz continuity in time (using (a) and Theorem 2).
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Hamilton-Jacobi problem on the network

Question

Does u solve a Hamilton-Jacobi problem defined on G?

Hamilton-Jacobi on networks: [Achdou-Camilli-Cutr̀ı-Tchou’13],
[Imbert-Monneau-Zidani’13], [Camilli-Schieborn’13], [Imbert-Monneau’17],
[Barles-Briani-Chasseigne’14], [Barles-Chasseigne’15],
[Achdou-Oudet-Tchou’15], [Lions-Souganidis’16],
[Graber-Hermosilla-Zidani’17], [Morfe’20], [Carlini-Festa-Forcadel’20],
[Fayad-Forcadel-Ibrahim’22], [Barles-Chasseigne, ppt], [Siconolfi’22]....

Answer

YES.

We first need to introduce the HJ operators.
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Notations: test functions and HJ operators

C 1(G) = {φ ∈ C (G); φ|Ji ∈ C 1(R+ei ), ∀i = 1, . . . ,N}
for φ ∈ C 1(G),

Dφ(x) =

{
Dφ|Ji if x ∈ Ji \ {O}(
Dφ|J1 , . . . ,Dφ|JN

)
if x = O;

and analogously for φ ∈ C 1(G × [0,T ]).

Hamilton-Jacobi operators. Fix a MFG equilibrium η ∈ Pm0(Γ).
∀x ∈ Ji , p ∈ R

Hη
i (x , t, p) =

|p|2

2
− ℓi [et#η](x , t)

Hη
i ,+(O, t, p) =

{
|p̄|2
2 − ℓi [et#η](O, t) if p ≤ 0

−ℓi [et#η](O, t) if p > 0.
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Hamilton-Jacobi problem associated to η

(HJη)


−∂tu + Hη

i (x , t,Du) = 0 if x ∈ Ji \ {O}
−∂tu + Hη

O(t,Du) = 0 if x = O
u(T , x) = G [eT#η](x) on G

Hη
O(t, p) = max

{
−ℓO [et#η](t), max

i=1,...,N

{
Hη
i ,+(O, t, pi )

}}

Definition: solutions

u is a subsolution (resp., a supersolution) if: for all φ ∈ C 1((0,T )× G)
s.t. u − φ has a maximum (resp., a minimum) at (t, x) there holds

−φt(t, x) + Hη
i (x , t,Dφ) ≤ 0 (resp., ≥ 0) if x ∈ Ji \ {O}

−φt(t, x) + Hη
O(t,Dφ) ≤ 0 (resp., ≥ 0) if x = O.

Proposition

The value function u is a solution to (HJη).
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Work in progress: control on the acceleration

In a network, the generic player controls its acceleration x ′′(s) with or
without bounds on x ′′.
Main features:

the state is (x , x ′)

lack of local controllability

viability set.
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Thank You!
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