Journée ANR
 Paris 16-17 March 2023

Homogenization of Hamilton-Jacobi equations on networks.
A. Siconolfi, Università di Roma "La Sapienza".

Overview

This is a research in collaboration with

- Marco Pozza and Alfonso Sorrentino

Overview

This is a research in collaboration with

- Marco Pozza and Alfonso Sorrentino

We prove an homogenization result starting from a family of ϵ-oscillating time-dependent Hamilton-Jacobi equation posed on a network embedded in \mathbb{R}^{N}.

Overview

This is a research in collaboration with

- Marco Pozza and Alfonso Sorrentino

We prove an homogenization result starting from a family of ϵ-oscillating time-dependent Hamilton-Jacobi equation posed on a network embedded in \mathbb{R}^{N}.

We find a limit HJ equation defined on an Euclidean space whose dimension depends on the topological complexity of the network.

Overview

This is a research in collaboration with

- Marco Pozza and Alfonso Sorrentino

We prove an homogenization result starting from a family of ϵ-oscillating time-dependent Hamilton-Jacobi equation posed on a network embedded in \mathbb{R}^{N}.

We find a limit HJ equation defined on an Euclidean space whose dimension depends on the topological complexity of the network.

We use a variational method over suitable spaces of probability measures.

Literature

- Imbert, Monneau 2014

They consider the periodic network generated by $\epsilon \mathbb{Z}^{N}$ and prove an homogenization result in their setting with PDE techniques.

Literature

- Imbert, Monneau 2014

They consider the periodic network generated by $\epsilon \mathbb{Z}^{N}$ and prove an homogenization result in their setting with PDE techniques.

- Camilli 2023
same network of above, estimates of convergence.

Literature

- Imbert, Monneau 2014

They consider the periodic network generated by $\epsilon \mathbb{Z}^{N}$ and prove an homogenization result in their setting with PDE techniques.

- Camilli 2023
same network of above, estimates of convergence.
Specified homogenization, periodic and stochastic with applications to traffic models.
- Galise, Imbert, Monneau 2015
- Forcadel and several coauthors

The homogenization problem

The homogenization problem for HJ equation was first treated and solved by

- Lions-Papanicolau-Varadhan unpublished 1987

The homogenization problem

The homogenization problem for HJ equation was first treated and solved by

- Lions-Papanicolau-Varadhan unpublished 1987 with an Hamiltonian $H(x, p), H: \mathbb{T}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ assumed
- continuous in (x, p) and coercive in p no convexity! They purely used PDE techniques.

The homogenization problem

The homogenization problem for HJ equation was first treated and solved by

- Lions-Papanicolau-Varadhan unpublished 1987 with an Hamiltonian $H(x, p), H: \mathbb{T}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ assumed
- continuous in (x, p) and coercive in p no convexity! They purely used PDE techniques.

The Hamiltonian is lifted to $\mathbb{R}^{N} \times \mathbb{R}^{N}$ by periodicity, and the following ϵ-problems are considered

$$
\left\{\begin{array}{cc}
u_{t}^{\epsilon}+H\left(x / \epsilon, D u^{\epsilon}\right)=0 & \text { in } \mathbb{R}^{N} \times(0,+\infty) \\
u^{\epsilon}=g & \text { in } \mathbb{R}^{N} \times\{0\}
\end{array}\right.
$$

where g is a continuous, in general non periodic, initial datum.

The problem is to study the asymptotic behavior of the solutions u^{ϵ} as $\epsilon \rightarrow 0$.

The problem is to study the asymptotic behavior of the solutions u^{ϵ} as $\epsilon \rightarrow 0$.

- It is straightforward to show that the u^{ϵ} locally uniformly converges in $\mathbb{R}^{N} \times[0,+\infty)$, at least up to subsequences, to a function u.

The problem is to study the asymptotic behavior of the solutions u^{ϵ} as $\epsilon \rightarrow 0$.

- It is straightforward to show that the u^{ϵ} locally uniformly converges in $\mathbb{R}^{N} \times[0,+\infty)$, at least up to subsequences, to a function u.
- The most innovative part of LPV result is to identify the limit problem solved by u.

The problem is to study the asymptotic behavior of the solutions u^{ϵ} as $\epsilon \rightarrow 0$.

- It is straightforward to show that the u^{ϵ} locally uniformly converges in $\mathbb{R}^{N} \times[0,+\infty)$, at least up to subsequences, to a function u.
- The most innovative part of LPV result is to identify the limit problem solved by u.
- The function u is solution to

$$
\left\{\begin{array}{cc}
u_{t}+\bar{H}(D u)=0 & \text { in } \mathbb{R}^{N} \times(0,+\infty) \\
u=g & \text { in } \mathbb{R}^{N} \times\{0\}
\end{array}\right.
$$

The problem is to study the asymptotic behavior of the solutions u^{ϵ} as $\epsilon \rightarrow 0$.

- It is straightforward to show that the u^{ϵ} locally uniformly converges in $\mathbb{R}^{N} \times[0,+\infty)$, at least up to subsequences, to a function u.
- The most innovative part of LPV result is to identify the limit problem solved by u.
- The function u is solution to

$$
\left\{\begin{array}{cc}
u_{t}+\bar{H}(D u)=0 & \text { in } \mathbb{R}^{N} \times(0,+\infty) \\
u=g & \text { in } \mathbb{R}^{N} \times\{0\}
\end{array}\right.
$$

- The effective Hamiltonian $\bar{H}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is the function which makes correspond to any p the (uniquely determined) value for which the cell problem

$$
H(x, D v+p)=\bar{H}(p)
$$

admits a periodic solution.

Dual approach

Another approach to the homogenization problem, not purely PDE, but variational is actually possible. An approach more Lagrangian.

Dual approach

Another approach to the homogenization problem, not purely PDE, but variational is actually possible. An approach more Lagrangian.

This is based on Lax-Oleinik formula which represent the solution redd $u(x, t)$ of a time dependent Hamilton-Jacobi equation with Hamiltonian H and Lagrangian L coupled with initial datum g at $t=0$ in terms of the minimal action functional.

Dual approach

Another approach to the homogenization problem, not purely PDE, but variational is actually possible. An approach more Lagrangian.

This is based on Lax-Oleinik formula which represent the solution redd $u(x, t)$ of a time dependent Hamilton-Jacobi equation with Hamiltonian H and Lagrangian L coupled with initial datum g at $t=0$ in terms of the minimal action functional.

Namely

$$
u(x, t)=\min \left\{g(\xi(0))+\int_{0}^{t} L(\xi, \dot{\xi}) d s\right\}
$$

where the minimum is over the curves with $\xi(t)=x$.

Dual approach

Another approach to the homogenization problem, not purely PDE, but variational is actually possible. An approach more Lagrangian.

This is based on Lax-Oleinik formula which represent the solution redd $u(x, t)$ of a time dependent Hamilton-Jacobi equation with Hamiltonian H and Lagrangian L coupled with initial datum g at $t=0$ in terms of the minimal action functional.

Namely

$$
u(x, t)=\min \left\{g(\xi(0))+\int_{0}^{t} L(\xi, \dot{\xi}) d s\right\}
$$

where the minimum is over the curves with $\xi(t)=x$.
The idea is to pass to the limit as $\epsilon \rightarrow 0$ in the formulas representing the solutions to the ϵ approximating problems.

This path have been already walked in

- Contreras, Iturriaga, S. 2015

This path have been already walked in

- Contreras, Iturriaga, S. 2015
where the homogenization result is proved starting from an arbitrary compact manifold, not just a torus, and the Hamiltonian is then lifted to a suitable covering manifold which provides a generalized periodicity.

This path have been already walked in

- Contreras, Iturriaga, S. 2015
where the homogenization result is proved starting from an arbitrary compact manifold, not just a torus, and the Hamiltonian is then lifted to a suitable covering manifold which provides a generalized periodicity.
This approach is essentially based on a seminal result of variational type by
- Mather 1991

This path have been already walked in

- Contreras, Iturriaga, S. 2015
where the homogenization result is proved starting from an arbitrary compact manifold, not just a torus, and the Hamiltonian is then lifted to a suitable covering manifold which provides a generalized periodicity.
This approach is essentially based on a seminal result of variational type by
- Mather 1991

The most relevant output of our work is to show that this result can adapted to the framework of networks/graphs.

Mather's result

For periodic homogenization the ϵ-Hamiltonians are given by $H(x / \epsilon, p)$. However this formulation does not make sense on manifolds and the same on graphs/networks.

Mather's result

For periodic homogenization the ϵ-Hamiltonians are given by $H(x / \epsilon, p)$. However this formulation does not make sense on manifolds and the same on graphs/networks.
We define the oscillating Hamiltonians as $H(x, p / \epsilon)$. This gives an equivalent homogenization problem in the periodic case.

Mather's result

For periodic homogenization the ϵ-Hamiltonians are given by $H(x / \epsilon, p)$. However this formulation does not make sense on manifolds and the same on graphs/networks.
We define the oscillating Hamiltonians as $H(x, p / \epsilon)$. This gives an equivalent homogenization problem in the periodic case.
The corresponding Lagrangians are $L(x, \epsilon q)$ and the action becomes

$$
\epsilon \int_{0}^{\frac{T}{\epsilon}} L(\xi, \dot{\xi}) d t
$$

to be minimized over the absolutely continuous curves linking two given points x and y in a time $\frac{T}{\epsilon}$.

Mather's result

For periodic homogenization the ϵ-Hamiltonians are given by $H(x / \epsilon, p)$. However this formulation does not make sense on manifolds and the same on graphs/networks.
We define the oscillating Hamiltonians as $H(x, p / \epsilon)$. This gives an equivalent homogenization problem in the periodic case.
The corresponding Lagrangians are $L(x, \epsilon q)$ and the action becomes

$$
\epsilon \int_{0}^{\frac{T}{\epsilon}} L(\xi, \dot{\xi}) d t
$$

to be minimized over the absolutely continuous curves linking two given points x and y in a time $\frac{T}{\epsilon}$.
The asymptotic problem related to the homogenization procedure is

$$
\lim _{\epsilon \rightarrow 0}\left[\inf \epsilon \int_{0}^{\frac{T}{\epsilon}} L(\xi, \dot{\xi}) d t\right]
$$

Mather proved (1991) that the above limit does not exist, moreover the asymptotic behavior of the above value function does not depend on x and y, but instead, roughly speaking, on the rotations of the curves linking them.

Mather proved (1991) that the above limit does not exist, moreover the asymptotic behavior of the above value function does not depend on x and y, but instead, roughly speaking, on the rotations of the curves linking them.
In other terms, to get a good asymptotic behavior of the minimization problem, we have to prescribe not only the initial and final point but, in a sense to made mathematically meaningful, also the rotations a curve perform to link the two points.

Mather proved (1991) that the above limit does not exist, moreover the asymptotic behavior of the above value function does not depend on x and y, but instead, roughly speaking, on the rotations of the curves linking them.
In other terms, to get a good asymptotic behavior of the minimization problem, we have to prescribe not only the initial and final point but, in a sense to made mathematically meaningful, also the rotations a curve perform to link the two points.
Equivalently: The variational problem must be therefore lifted to an appropriate space where such a construction is possible, in geometric jargon a covering manifold.

Mather proved (1991) that the above limit does not exist, moreover the asymptotic behavior of the above value function does not depend on x and y, but instead, roughly speaking, on the rotations of the curves linking them.
In other terms, to get a good asymptotic behavior of the minimization problem, we have to prescribe not only the initial and final point but, in a sense to made mathematically meaningful, also the rotations a curve perform to link the two points.
Equivalently: The variational problem must be therefore lifted to an appropriate space where such a construction is possible, in geometric jargon a covering manifold.
This is similar to what done in the periodic setting when the ϵ-oscillating problems are lifted from \mathbb{T}^{N} to \mathbb{R}^{N}.

Networks

- A network $\mathcal{N} \subset \mathbb{R}^{N}$ can be understood as a piecewise regular 1- dimensional manifold. It has the form

$$
\mathcal{N}=\bigcup_{\gamma \in \mathcal{E}} \gamma([0,1])
$$

where \mathcal{E} is a finite collection of regular simple curves, called arcs of the network, parametrized in $[0,1]$.

Networks

- A network $\mathcal{N} \subset \mathbb{R}^{N}$ can be understood as a piecewise regular 1- dimensional manifold. It has the form

$$
\mathcal{N}=\bigcup_{\gamma \in \mathcal{E}} \gamma([0,1])
$$

where \mathcal{E} is a finite collection of regular simple curves, called arcs of the network, parametrized in $[0,1]$.

- It is non oriented, namely for any arc γ, we also consider the inverse arc

$$
\widetilde{\gamma}(t)=\gamma(1-t) \quad \text { for } t \in[0,1]
$$

Networks

- A network $\mathcal{N} \subset \mathbb{R}^{N}$ can be understood as a piecewise regular 1- dimensional manifold. It has the form

$$
\mathcal{N}=\bigcup_{\gamma \in \mathcal{E}} \gamma([0,1])
$$

where \mathcal{E} is a finite collection of regular simple curves, called arcs of the network, parametrized in $[0,1]$.

- It is non oriented, namely for any arc γ, we also consider the inverse arc

$$
\widetilde{\gamma}(t)=\gamma(1-t) \quad \text { for } t \in[0,1]
$$

- Initial and final points of any arc γ, namely $\gamma(0)$ and $\gamma(1)$, have a special status, they are called vertices of the network. The set of vertices is denoted by \mathbf{V}. The key condition is that arcs with different support can intersect only at the vertices.
- Vertices are the points where the regularity of the network fails.
- Vertices are the points where the regularity of the network fails.
- We consider on the network the metric induced by the Euclidean one in \mathbb{R}^{N}.
- Vertices are the points where the regularity of the network fails.
- We consider on the network the metric induced by the Euclidean one in \mathbb{R}^{N}.
- A curve on \mathcal{N} is an absolutely function $\xi:[0, T] \rightarrow \mathcal{N}$. We will also consider special curves whose support is made by the union of the supports concatenated arcs.

$$
\operatorname{spt} \xi=\cup_{i} \operatorname{spt} \gamma_{i}
$$

In this case $\xi(0)$ and $\xi(T)$ are vertices.

- Vertices are the points where the regularity of the network fails.
- We consider on the network the metric induced by the Euclidean one in \mathbb{R}^{N}.
- A curve on \mathcal{N} is an absolutely function $\xi:[0, T] \rightarrow \mathcal{N}$. We will also consider special curves whose support is made by the union of the supports concatenated arcs.

$$
\operatorname{spt} \xi=\cup_{i} \operatorname{spt} \gamma_{i}
$$

In this case $\xi(0)$ and $\xi(T)$ are vertices.

- The curve ξ is called closed or a cycle if $\xi(0)=\xi(T)$.
- Vertices are the points where the regularity of the network fails.
- We consider on the network the metric induced by the Euclidean one in \mathbb{R}^{N}.
- A curve on \mathcal{N} is an absolutely function $\xi:[0, T] \rightarrow \mathcal{N}$. We will also consider special curves whose support is made by the union of the supports concatenated arcs.

$$
\operatorname{spt} \xi=\cup_{i} \operatorname{spt} \gamma_{i}
$$

In this case $\xi(0)$ and $\xi(T)$ are vertices.

- The curve ξ is called closed or a cycle if $\xi(0)=\xi(T)$.
- The curve ξ is called a circuit if it is closed and injective in $(0, T)$.

We assume the following conditions on \mathcal{N} :

We assume the following conditions on \mathcal{N} :

- It is finite, in the sense that both arcs and vertices are finite. We will also consider locally finite networks. This means each vertex has a finite number of arcs starting at it

We assume the following conditions on \mathcal{N} :

- It is finite, in the sense that both arcs and vertices are finite. We will also consider locally finite networks. This means each vertex has a finite number of arcs starting at it
- There are no loops, namely arcs starting and ending at the same vertex.

We assume the following conditions on \mathcal{N} :

- It is finite, in the sense that both arcs and vertices are finite. We will also consider locally finite networks. This means each vertex has a finite number of arcs starting at it
- There are no loops, namely arcs starting and ending at the same vertex.
- It is connected, namely any pair of points in \mathcal{N} are linked by some curve.

We assume the following conditions on \mathcal{N} :

- It is finite, in the sense that both arcs and vertices are finite. We will also consider locally finite networks. This means each vertex has a finite number of arcs starting at it
- There are no loops, namely arcs starting and ending at the same vertex.
- It is connected, namely any pair of points in \mathcal{N} are linked by some curve.

Hamiltonians and HJ equations on \mathcal{N}

- An Hamiltonian on \mathcal{N} is a finite family of one-dimensional Hamiltonians

$$
\begin{aligned}
H_{\gamma}:[0,1] \times \mathbb{R} & \rightarrow \mathbb{R} \\
(s, \mu) & \mapsto H_{\gamma}(s, \mu)
\end{aligned}
$$

indexed by the arcs.

Hamiltonians and HJ equations on \mathcal{N}

- An Hamiltonian on \mathcal{N} is a finite family of one-dimensional Hamiltonians

$$
\begin{aligned}
H_{\gamma}:[0,1] \times \mathbb{R} & \rightarrow \mathbb{R} \\
(s, \mu) & \mapsto H_{\gamma}(s, \mu)
\end{aligned}
$$

indexed by the arcs.

- They are totally unrelated for arcs with different support, and

$$
H_{\tilde{\gamma}}(s, \mu)=H_{\gamma}(1-s,-\mu) .
$$

Hamiltonians and HJ equations on \mathcal{N}

- An Hamiltonian on \mathcal{N} is a finite family of one-dimensional Hamiltonians

$$
\begin{aligned}
H_{\gamma}:[0,1] \times \mathbb{R} & \rightarrow \mathbb{R} \\
(s, \mu) & \mapsto H_{\gamma}(s, \mu)
\end{aligned}
$$

indexed by the arcs.

- They are totally unrelated for arcs with different support, and

$$
H_{\tilde{\gamma}}(s, \mu)=H_{\gamma}(1-s,-\mu)
$$

- We assume
- continuity in s, continuous differentiability in μ;
- convexity in μ;
- superlinearity in μ;
- the map $s \mapsto \min _{\mu} H_{\gamma}(s, p)$ is constant for any γ.

Note that the first three assumption are standard. The last one is necessary for the analysis of the corresponding stationary equation in Weak KAM setting. See

- S., Sorrentino 2018

Note that the first three assumption are standard. The last one is necessary for the analysis of the corresponding stationary equation in Weak KAM setting. See

- S., Sorrentino 2018

A time-dependent Hamilton-Jacobi equation on \mathcal{N} is a collection of one-dimensional HJ equation of the form

$$
u_{t}+H_{\gamma}\left(s, u^{\prime}\right)=0 \quad \text { in }(0,1) \times(0,+\infty)
$$

Note that the first three assumption are standard. The last one is necessary for the analysis of the corresponding stationary equation in Weak KAM setting. See

- S., Sorrentino 2018

A time-dependent Hamilton-Jacobi equation on \mathcal{N} is a collection of one-dimensional HJ equation of the form

$$
u_{t}+H_{\gamma}\left(s, u^{\prime}\right)=0 \quad \text { in }(0,1) \times(0,+\infty)
$$

A solution is a continuous function $v: \mathcal{N} \times(0,+\infty) \rightarrow \mathbb{R}$ such that
$-v(\gamma(s), t)$ is solution to ($\mathrm{HJ} \gamma$) for any γ;

- v satisfies suitable additional conditions on the discontinuity interfaces

$$
\{(x, t) \mid x \in \mathbf{V}, t \in(0,+\infty)\}
$$

We have uniqueness of the solution once an initial continuous datum is prescribed at $t=0$ and flux limiter c_{x} at any vertex x. The flux limiter plays an essential role in the conditions on the discontinuity interfaces

We have uniqueness of the solution once an initial continuous datum is prescribed at $t=0$ and flux limiter c_{x} at any vertex x. The flux limiter plays an essential role in the conditions on the discontinuity interfaces
We set $c_{\gamma}=\max _{s} \min _{\mu} H_{\gamma}(s, \mu)$, a flux limiter must satisfy

$$
c_{x} \geq \max \left\{c_{\gamma} \mid \gamma \text { ending at } x\right\}
$$

We have uniqueness of the solution once an initial continuous datum is prescribed at $t=0$ and flux limiter c_{x} at any vertex x. The flux limiter plays an essential role in the conditions on the discontinuity interfaces
We set $c_{\gamma}=\max _{s} \min _{\mu} H_{\gamma}(s, \mu)$, a flux limiter must satisfy

$$
c_{x} \geq \max \left\{c_{\gamma} \mid \gamma \text { ending at } x\right\}
$$

- Imbert-Monneau 2015, S. 2022

We have uniqueness of the solution once an initial continuous datum is prescribed at $t=0$ and flux limiter c_{x} at any vertex x. The flux limiter plays an essential role in the conditions on the discontinuity interfaces
We set $c_{\gamma}=\max _{s} \min _{\mu} H_{\gamma}(s, \mu)$, a flux limiter must satisfy

$$
c_{x} \geq \max \left\{c_{\gamma} \mid \gamma \text { ending at } x\right\}
$$

- Imbert-Monneau 2015, S. 2022

From now on we take c_{x} as the minimal flux limiter.

Lagrangians on \mathcal{N}

We define $L_{\gamma}(s, \lambda)$ as the convex conjugate of $H_{\gamma}(s, \mu)$ for any arc γ.

Lagrangians on \mathcal{N}

We define $L_{\gamma}(s, \lambda)$ as the convex conjugate of $H_{\gamma}(s, \mu)$ for any arc γ.
In contrast to what happens for the Hamiltonians H_{γ} which are unrelated, we introduce some gluing condition for L_{γ} at the vertices to define a global Lagrangian L.

Lagrangians on \mathcal{N}

We define $L_{\gamma}(s, \lambda)$ as the convex conjugate of $H_{\gamma}(s, \mu)$ for any arc γ.
In contrast to what happens for the Hamiltonians H_{γ} which are unrelated, we introduce some gluing condition for L_{γ} at the vertices to define a global Lagrangian L.
We obtain a lower semicontinuous Lagrangian $L(x, q)$ defined on the tangent bundle of \mathcal{N} made up by elements of $(x, q) \in \mathcal{N} \times \mathbb{R}^{N}$ with q of the form

$$
q=\rho \dot{\gamma}(s) \quad \text { if } x=\gamma(s), \text { with } \rho \in \mathbb{R}
$$

Lagrangians on \mathcal{N}

We define $L_{\gamma}(s, \lambda)$ as the convex conjugate of $H_{\gamma}(s, \mu)$ for any arc γ.
In contrast to what happens for the Hamiltonians H_{γ} which are unrelated, we introduce some gluing condition for L_{γ} at the vertices to define a global Lagrangian L.
We obtain a lower semicontinuous Lagrangian $L(x, q)$ defined on the tangent bundle of \mathcal{N} made up by elements of $(x, q) \in \mathcal{N} \times \mathbb{R}^{N}$ with q of the form

$$
q=\rho \dot{\gamma}(s) \quad \text { if } x=\gamma(s), \text { with } \rho \in \mathbb{R}
$$

satisfying

$$
L(x, 0)=-c_{x} \quad \text { at any vertex } x
$$

We define the action functional on any curve $\xi:[0, T] \rightarrow \mathcal{N}$ as

$$
\int_{0}^{T} L(\xi, \dot{\xi}) d t
$$

We define the action functional on any curve $\xi:[0, T] \rightarrow \mathcal{N}$ as

$$
\int_{0}^{T} L(\xi, \dot{\xi}) d t
$$

The unique solution to the ($\mathrm{HJ} \gamma$)'s plus initial condition plus flux limiter can be represented by a Lax-Oleinik formula.

We define the action functional on any curve $\xi:[0, T] \rightarrow \mathcal{N}$ as

$$
\int_{0}^{T} L(\xi, \dot{\xi}) d t
$$

The unique solution to the ($\mathrm{HJ} \gamma$)'s plus initial condition plus flux limiter can be represented by a Lax-Oleinik formula.

- Imbert-Monneau-Zidani 2012, Pozza, S. 2023

Covering networks

The first step in the homogenization procedure is to lift the Hamiltonian in suitable covering space where the ϵ - problems are defined.

Covering networks

The first step in the homogenization procedure is to lift the Hamiltonian in suitable covering space where the ϵ - problems are defined.
For periodic homogenization: from \mathbb{T}^{N} to \mathbb{R}^{N}.

Covering networks

The first step in the homogenization procedure is to lift the Hamiltonian in suitable covering space where the ϵ - problems are defined.
For periodic homogenization: from \mathbb{T}^{N} to \mathbb{R}^{N}.

- The vertices of the covering graph $\hat{\mathcal{N}}$ are $\mathbf{V} \times \mathbb{Z}^{M}$, where M is a dimension to be identified. $\hat{\mathcal{N}}$ is therefore embedded in $\mathbb{R}^{N} \times \mathbb{R}^{M}$. It is locally finite.

Covering networks

The first step in the homogenization procedure is to lift the Hamiltonian in suitable covering space where the ϵ - problems are defined.
For periodic homogenization: from \mathbb{T}^{N} to \mathbb{R}^{N}.

- The vertices of the covering graph $\hat{\mathcal{N}}$ are $\mathbf{V} \times \mathbb{Z}^{M}$, where M is a dimension to be identified. $\hat{\mathcal{N}}$ is therefore embedded in $\mathbb{R}^{N} \times \mathbb{R}^{M}$. It is locally finite.
- We will make precise later which vertices are linked by an arc. The arcs of $\hat{\mathcal{N}}$ are of the form (γ, η) where γ is an arc of \mathcal{N} and η is a segment of \mathbb{R}^{M} parametrized in $[0,1]$.

Covering networks

The first step in the homogenization procedure is to lift the Hamiltonian in suitable covering space where the ϵ - problems are defined.
For periodic homogenization: from \mathbb{T}^{N} to \mathbb{R}^{N}.

- The vertices of the covering graph $\hat{\mathcal{N}}$ are $\mathbf{V} \times \mathbb{Z}^{M}$, where M is a dimension to be identified. $\hat{\mathcal{N}}$ is therefore embedded in $\mathbb{R}^{N} \times \mathbb{R}^{M}$. It is locally finite.
- We will make precise later which vertices are linked by an arc. The arcs of $\hat{\mathcal{N}}$ are of the form (γ, η) where γ is an arc of \mathcal{N} and η is a segment of \mathbb{R}^{M} parametrized in $[0,1]$.
- We lift the Hamiltonian by periodicity

$$
H_{(\gamma, \eta)}(s, \mu)=H_{\gamma}(s, \mu) \quad \text { for }(x, \mu) \in[0,1] \times \mathbb{R}
$$

Approximating and limit equations

The approximating equations are

$$
u_{t}^{\epsilon}+H_{(\gamma, \eta)}\left(s, u^{\prime} / \epsilon\right)=0
$$

with flux limiters

$$
c_{(x, h)}=c_{x} \quad \text { for any }(x, h) \in \mathbf{V} \times \mathbb{Z}^{M}
$$

coupled with a continuous initial datum g_{ϵ} on $\hat{\mathcal{N}}$.

Approximating and limit equations

The approximating equations are

$$
u_{t}^{\epsilon}+H_{(\gamma, \eta)}\left(s, u^{\prime} / \epsilon\right)=0
$$

with flux limiters

$$
c_{(x, h)}=c_{X} \quad \text { for any }(x, h) \in \mathbf{V} \times \mathbb{Z}^{M}
$$

coupled with a continuous initial datum g_{ϵ} on $\hat{\mathcal{N}}$.
It can be proved that the uniqueness result and the Lax-Oleinik formula still holds in networks just locally finite.

Approximating and limit equations

The approximating equations are

$$
u_{t}^{\epsilon}+H_{(\gamma, \eta)}\left(s, u^{\prime} / \epsilon\right)=0
$$

with flux limiters

$$
c_{(x, h)}=c_{X} \quad \text { for any }(x, h) \in \mathbf{V} \times \mathbb{Z}^{M}
$$

coupled with a continuous initial datum g_{ϵ} on $\hat{\mathcal{N}}$.
It can be proved that the uniqueness result and the Lax-Oleinik formula still holds in networks just locally finite.
The limit equation is posed in \mathbb{R}^{M} and has the form

$$
\begin{equation*}
u_{t}+\bar{H}(D u)=0 \tag{HJ}
\end{equation*}
$$

coupled with a continuous initial datum g. Here $\bar{H}: \mathbb{R}^{M} \rightarrow \mathbb{R}$ is an Hamiltonian to be identified.

Convergence of functions

We have to prove that the solutions of the approximating problems defined in $\hat{\mathcal{N}} \times[0,+\infty)$ converge in some sense to the solution of the limit equation defined in $\mathbb{R}^{M} \times(0,+\infty)$.

Convergence of functions

We have to prove that the solutions of the approximating problems defined in $\hat{\mathcal{N}} \times[0,+\infty)$ converge in some sense to the solution of the limit equation defined in $\mathbb{R}^{M} \times(0,+\infty)$.
We have also to relate the initial data g_{ϵ} defined in \mathcal{N} to g which is defined in \mathbb{R}^{M}.

Convergence of functions

We have to prove that the solutions of the approximating problems defined in $\hat{\mathcal{N}} \times[0,+\infty)$ converge in some sense to the solution of the limit equation defined in $\mathbb{R}^{M} \times(0,+\infty)$.
We have also to relate the initial data g_{ϵ} defined in \mathcal{N} to g which is defined in \mathbb{R}^{M}.
To help understanding this point, we remark that \mathbb{R}^{M} and $\mathbf{V} \times \mathbb{Z}^{M}$ are isometric if we look at them at a large scale distance. Same as \mathbb{Z}^{M} and \mathbb{R}^{M}.

Convergence of functions

We have to prove that the solutions of the approximating problems defined in $\hat{\mathcal{N}} \times[0,+\infty)$ converge in some sense to the solution of the limit equation defined in $\mathbb{R}^{M} \times(0,+\infty)$.
We have also to relate the initial data g_{ϵ} defined in \mathcal{N} to g which is defined in \mathbb{R}^{M}.
To help understanding this point, we remark that \mathbb{R}^{M} and $\mathbf{V} \times \mathbb{Z}^{M}$ are isometric if we look at them at a large scale distance. Same as \mathbb{Z}^{M} and \mathbb{R}^{M}.

The map $F: \mathbf{V} \times \mathbb{Z}^{M} \rightarrow \mathbb{R}^{M}$ defined as

$$
F(x, h)=h
$$

is in fact a quasi-isometry, which is the equivalent of an isometry for large scale geometry.

Convergence of functions

We have to prove that the solutions of the approximating problems defined in $\hat{\mathcal{N}} \times[0,+\infty)$ converge in some sense to the solution of the limit equation defined in $\mathbb{R}^{M} \times(0,+\infty)$.
We have also to relate the initial data g_{ϵ} defined in \mathcal{N} to g which is defined in \mathbb{R}^{M}.
To help understanding this point, we remark that \mathbb{R}^{M} and $\mathbf{V} \times \mathbb{Z}^{M}$ are isometric if we look at them at a large scale distance. Same as \mathbb{Z}^{M} and \mathbb{R}^{M}.

The map $F: \mathbf{V} \times \mathbb{Z}^{M} \rightarrow \mathbb{R}^{M}$ defined as

$$
F(x, h)=h
$$

is in fact a quasi-isometry, which is the equivalent of an isometry for large scale geometry.

Definition

A map F between two metric spaces $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ is called a quasi-isometry if there exist $k \geq 1$ and $A \geq 0$ with

$$
\frac{1}{k} d_{X}\left(x_{1}, x_{2}\right)-A \leq d_{Y}\left(F\left(x_{1}\right), F\left(x_{2}\right)\right) \leq k d_{X}\left(x_{1}, x_{2}\right)+A
$$

for any x_{1}, x_{2} in X

Definition

A map F between two metric spaces $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ is called a quasi-isometry if there exist $k \geq 1$ and $A \geq 0$ with

$$
\frac{1}{k} d_{X}\left(x_{1}, x_{2}\right)-A \leq d_{Y}\left(F\left(x_{1}\right), F\left(x_{2}\right)\right) \leq k d_{X}\left(x_{1}, x_{2}\right)+A
$$

for any x_{1}, x_{2} in X

- A quasi-isometry is coarsely surjective, in the sense that for any $y \in Y$ there is an image $F(x)$ close to y
- and coarsely injective, in the sense that if $F\left(x_{1}\right)=F\left(x_{2}\right)$ then x_{1} and x_{2} are close.

We enhance the large scale effect endowing the network $\hat{\mathcal{N}}$ of the distance ϵd.

We enhance the large scale effect endowing the network $\hat{\mathcal{N}}$ of the distance ϵd.
We accordingly define the sequence of quasi-isometries from $(\hat{\mathcal{N}}, \epsilon d)$ to $\left(\mathbb{R}^{M},|\cdot|\right)$

$$
F_{\epsilon}:(x, h) \rightarrow \epsilon h
$$

We enhance the large scale effect endowing the network $\hat{\mathcal{N}}$ of the distance ϵd.
We accordingly define the sequence of quasi-isometries from $(\hat{\mathcal{N}}, \epsilon d)$ to $\left(\mathbb{R}^{M},|\cdot|\right)$

$$
F_{\epsilon}:(x, h) \rightarrow \epsilon h
$$

We say that a sequence $u_{\epsilon}: \mathcal{N} \rightarrow \mathbb{R} F_{\epsilon}$-locally uniformly converges to $u: \mathbb{R}^{b(\Gamma)} \rightarrow \mathbb{R}$ if for any subsequence $\left(x_{\epsilon_{n}}, h_{\epsilon_{n}}\right)$ with

$$
\epsilon_{n} h_{\epsilon_{n}} \rightarrow h
$$

one has

$$
u_{\epsilon_{n}}\left(x_{\epsilon_{n}}, h_{\epsilon_{n}}\right) \rightarrow u(h)
$$

Identifying the dimension M

- We fix a maximal tree \mathcal{T} in \mathcal{N}, namely a subnetwork of \mathcal{N} without nontrivial cycles containing all the vertices of \mathcal{N}. Such an object does exists, even if it is not unique.

Identifying the dimension M

- We fix a maximal tree \mathcal{T} in \mathcal{N}, namely a subnetwork of \mathcal{N} without nontrivial cycles containing all the vertices of \mathcal{N}. Such an object does exists, even if it is not unique.
- We fix an orientation \mathcal{E}^{+}on \mathcal{N}, namely the choice of exactly one arc in the pair $\{\gamma, \tilde{\gamma}\}$
- We denote by $\mathcal{E}_{\mathcal{T}}^{+}$the set of all the arcs of \mathcal{T} belonging to \mathcal{E}^{+}.

Identifying the dimension M

- We fix a maximal tree \mathcal{T} in \mathcal{N}, namely a subnetwork of \mathcal{N} without nontrivial cycles containing all the vertices of \mathcal{N}. Such an object does exists, even if it is not unique.
- We fix an orientation \mathcal{E}^{+}on \mathcal{N}, namely the choice of exactly one arc in the pair $\{\gamma, \tilde{\gamma}\}$
- We denote by $\mathcal{E}_{\mathcal{T}}^{+}$the set of all the arcs of \mathcal{T} belonging to \mathcal{E}^{+}. M is equal to the number of elements of $\mathcal{E}^{+} \backslash \mathcal{E}_{\mathcal{T}}^{+}$. It is called first Betti number of Γ and is an indicator of the topological complexity of the network.

The map θ

We aim at is associating to any curve in \mathcal{N} a sort of rotation number.

The map θ

We aim at is associating to any curve in \mathcal{N} a sort of rotation number.

- We associate to any arc $\gamma \in \mathcal{E}+\backslash \mathcal{E}_{\mathcal{T}}$ the unique circuit, denoted by $\theta(\gamma)$, in \mathcal{T} made up by γ and arcs in \mathcal{T}.

The map θ

We aim at is associating to any curve in \mathcal{N} a sort of rotation number.

- We associate to any arc $\gamma \in \mathcal{E}+\backslash \mathcal{E}_{\mathcal{T}}$ the unique circuit, denoted by $\theta(\gamma)$, in \mathcal{T} made up by γ and arcs in \mathcal{T}.

There is an interpretation in terms of electricity flow. In the tree \mathcal{T} there is no flow of electricity since there are no nontrivial circuits. However any arc γ outside \mathcal{T}, because of the maximality of \mathcal{T}, allows closing a circuit. The circuit is actually $\theta(\gamma)$.

Homology groups

Altogether we have defined a map

$$
\theta: \mathcal{E}^{+} \backslash \mathcal{E}_{\mathcal{T}}^{+} \rightarrow \text { family of circuits of } \mathcal{T}
$$

Homology groups

Altogether we have defined a map

$$
\theta: \mathcal{E}^{+} \backslash \mathcal{E}_{\mathcal{T}}^{+} \rightarrow \text { family of circuits of } \mathcal{T}
$$

To frame it in an algebraic structure, we introduce the free Abelian group on the circuits in $\mathcal{E}_{\mathcal{T}}^{+}$with coefficients in \mathbb{Z}.

Homology groups

Altogether we have defined a map

$$
\theta: \mathcal{E}^{+} \backslash \mathcal{E}_{\mathcal{T}}^{+} \rightarrow \text { family of circuits of } \mathcal{T}
$$

To frame it in an algebraic structure, we introduce the free Abelian group on the circuits in $\mathcal{E}_{\mathcal{T}}^{+}$with coefficients in \mathbb{Z}.
Namely the group of formal sums of these circuits with coefficients in \mathbb{Z}, with the identification $\theta(\tilde{\gamma})=-\theta(\gamma)$ so that the following cancellation law holds

$$
\theta(\gamma)+\theta(\tilde{\gamma})=0
$$

Homology groups

Altogether we have defined a map

$$
\theta: \mathcal{E}^{+} \backslash \mathcal{E}_{\mathcal{T}}^{+} \rightarrow \text { family of circuits of } \mathcal{T}
$$

To frame it in an algebraic structure, we introduce the free Abelian group on the circuits in $\mathcal{E}_{\mathcal{T}}^{+}$with coefficients in \mathbb{Z}.
Namely the group of formal sums of these circuits with coefficients in \mathbb{Z}, with the identification $\theta(\tilde{\gamma})=-\theta(\gamma)$ so that the following cancellation law holds

$$
\theta(\gamma)+\theta(\tilde{\gamma})=0
$$

This group is called the first homology group of Γ with coefficients in \mathbb{Z}.

Homology groups

Altogether we have defined a map

$$
\theta: \mathcal{E}^{+} \backslash \mathcal{E}_{\mathcal{T}}^{+} \rightarrow \text { family of circuits of } \mathcal{T}
$$

To frame it in an algebraic structure, we introduce the free Abelian group on the circuits in $\mathcal{E}_{\mathcal{T}}^{+}$with coefficients in \mathbb{Z}.
Namely the group of formal sums of these circuits with coefficients in \mathbb{Z}, with the identification $\theta(\tilde{\gamma})=-\theta(\gamma)$ so that the following cancellation law holds

$$
\theta(\gamma)+\theta(\tilde{\gamma})=0
$$

This group is called the first homology group of Γ with coefficients in \mathbb{Z}.
Same construction can be performed with coefficients in \mathbb{R} obtaining $H_{1}(\Gamma, \mathbb{R})$.

We complete the definition of θ through

$$
\theta(\gamma)=0 \quad \text { for all } e \in \mathcal{E}_{\mathcal{T}}
$$

We complete the definition of θ through

$$
\theta(\gamma)=0 \quad \text { for all } e \in \mathcal{E}_{\mathcal{T}}
$$

We can look at θ as a map from \mathcal{E} to $H_{1}(\mathcal{N}, \mathbb{Z}) \sim \mathbb{Z}^{M}$.

We complete the definition of θ through

$$
\theta(\gamma)=0 \quad \text { for all } e \in \mathcal{E}_{\mathcal{T}}
$$

We can look at θ as a map from \mathcal{E} to $H_{1}(\mathcal{N}, \mathbb{Z}) \sim \mathbb{Z}^{M}$.
$H_{1}(\Gamma, \mathbb{Z}) \sim \mathbb{R}^{M}$ is the space where the limit equation of the homogenization procedure is posed

Rotation number of a curve

To any curve ξ with $\operatorname{spt} \xi=U_{i} \operatorname{spt} \gamma_{i}$ we associate the rotation number

$$
\theta(\xi)=\sum_{i=1}^{M} \theta\left(\gamma_{i}\right) \in \mathbb{Z}^{M}
$$

Rotation number of a curve

To any curve ξ with $\operatorname{spt} \xi=U_{i} \operatorname{spt} \gamma_{i}$ we associate the rotation number

$$
\theta(\xi)=\sum_{i=1}^{M} \theta\left(\gamma_{i}\right) \in \mathbb{Z}^{M}
$$

We consider the problem of minimizing the action between two given vertices in a given time, prescribing in addition the rotation number

Rotation number of a curve

To any curve ξ with $\operatorname{spt} \xi=U_{i} \operatorname{spt} \gamma_{i}$ we associate the rotation number

$$
\theta(\xi)=\sum_{i=1}^{M} \theta\left(\gamma_{i}\right) \in \mathbb{Z}^{M}
$$

We consider the problem of minimizing the action between two given vertices in a given time, prescribing in addition the rotation number
We consider the variational probelm

$$
\inf \left\{\int_{0}^{T} L(\xi, \dot{\xi}) d t \mid \xi(0)=x, \xi(T)=y, \theta(\xi)=h\right\}
$$

where $x, y \in \mathbf{V}, h \in \mathbb{Z}^{M}$.

We complete the definition of the covering network $\hat{\mathcal{N}}$ with vertices $\mathbf{V} \times \mathbb{Z}^{M}$ prescribing the two vertices $\left(x_{1}, h_{1}\right)$, $\left(x_{2}, h_{2}\right)$ are connected by an arc (γ, η) if

We complete the definition of the covering network $\hat{\mathcal{N}}$ with vertices $\mathbf{V} \times \mathbb{Z}^{M}$ prescribing the two vertices $\left(x_{1}, h_{1}\right)$, $\left(x_{2}, h_{2}\right)$ are connected by an arc (γ, η) if

- x_{1} and x_{2} are connected by γ in \mathcal{N};

We complete the definition of the covering network $\hat{\mathcal{N}}$ with vertices $\mathbf{V} \times \mathbb{Z}^{M}$ prescribing the two vertices $\left(x_{1}, h_{1}\right)$, $\left(x_{2}, h_{2}\right)$ are connected by an arc (γ, η) if

- x_{1} and x_{2} are connected by γ in \mathcal{N};

$$
-h_{2}-h_{1}=\theta(\gamma)
$$

We complete the definition of the covering network $\hat{\mathcal{N}}$ with vertices $\mathbf{V} \times \mathbb{Z}^{M}$ prescribing the two vertices $\left(x_{1}, h_{1}\right)$, $\left(x_{2}, h_{2}\right)$ are connected by an arc (γ, η) if

- x_{1} and x_{2} are connected by γ in \mathcal{N};

$$
-h_{2}-h_{1}=\theta(\gamma)
$$

In this case

$$
\eta(t)=(1-t) h_{1}+t h_{2} .
$$

In this setting we have
Fact
The problem

$$
\inf \left\{\int_{0}^{T} L(\xi, \dot{\xi}) d t \mid \xi(0)=x, \xi(T)=y, \theta(\xi)=h\right\}
$$

is equivalent to

In this setting we have

Fact

The problem

$$
\inf \left\{\int_{0}^{T} L(\xi, \dot{\xi}) d t \mid \xi(0)=x, \xi(T)=y, \theta(\xi)=h\right\}
$$

is equivalent to

$$
\Phi\left(\left(x_{1}, h_{1}\right),\left(x_{2}, h_{2}\right), T\right)=\inf \left\{\int_{0}^{T} L((x i, \eta),(\dot{\xi}, \dot{\eta}) d t\}\right.
$$

where the infimum is over the curves (ξ, η) with $(\xi(0), \eta(0))=\left(x, h_{1}\right),(\xi(T), \eta(T))=\left(y, h_{2}\right), h_{2}-h_{1}=h$.

Relaxed problems

We relax the above variational problem in a suitable space of measures.
To any curve ξ defined in $[0, T]$, we associate the occupation measure μ_{ξ} defined as

$$
\mu_{\xi}(E)=\frac{1}{T} \int \chi_{E}(\xi, \dot{\xi}) d t
$$

where χ is the characteristic fnction.

Relaxed problems

We relax the above variational problem in a suitable space of measures.
To any curve ξ defined in $[0, T]$, we associate the occupation measure μ_{ξ} defined as

$$
\mu_{\xi}(E)=\frac{1}{T} \int \chi_{E}(\xi, \dot{\xi}) d t
$$

where χ is the characteristic fnction.
We define the space of closed measures as the closure with respect to the first Wasserstein topology of the occupation measures corresponding to closed curves.

Relaxed problems

We relax the above variational problem in a suitable space of measures.
To any curve ξ defined in $[0, T]$, we associate the occupation measure μ_{ξ} defined as

$$
\mu_{\xi}(E)=\frac{1}{T} \int \chi_{E}(\xi, \dot{\xi}) d t
$$

where χ is the characteristic fnction.
We define the space of closed measures as the closure with respect to the first Wasserstein topology of the occupation measures corresponding to closed curves.
By relaxing the previous construction on curves, we can define a rotation vector $\rho(\mu) \in H_{1}(\mathcal{N}, \mathbb{R}) \sim \mathbb{R}^{M}$ for any closed measure.

We consider the problem

$$
\inf \left\{\int L(x, q) d \mu\right\}
$$

where the infimum is over the closed measures with prescribed rotation vector.

We consider the problem

$$
\inf \left\{\int L(x, q) d \mu\right\}
$$

where the infimum is over the closed measures with prescribed rotation vector.

The above problem is well posed and there are minimizers

We consider the problem

$$
\inf \left\{\int L(x, q) d \mu\right\}
$$

where the infimum is over the closed measures with prescribed rotation vector.

The above problem is well posed and there are minimizers The corresponding value function is denoted by $\beta: \mathbb{R}^{M} \rightarrow \mathbb{R}$ and is convex and superlinear.

Mather's result on networks

Mather's result on networks

Theorem

For any positive A, δ, there exists $T_{0}=T_{0}(A, \delta)$ such that

$$
\left|\frac{1}{T} \Phi\left(\left(x_{1}, h_{1}\right)\left(x_{2}, h_{2}\right) T\right)-\beta\left(\frac{I-m}{T}\right)\right|<\delta
$$

for $T>T_{0}$, and $\left|\frac{I-m}{T}\right|<A$.

The convex dual of the function β is the effective Hamiltonian \bar{H} appearing in the limit problem of the homogenization procedure.

The convex dual of the function β is the effective Hamiltonian \bar{H} appearing in the limit problem of the homogenization procedure.

For any $p \in \mathbb{R}^{M}, \bar{H}(p)$ is univocally defined as the value for which the stationary equation

$$
H_{\gamma}\left(s, v^{\prime}+p \cdot \theta(\gamma)\right)=\bar{H}(p)
$$

has solution in \mathcal{N}.

Main result

Theorem

Assume that initial data $g_{\epsilon} F_{\epsilon}$ locally converge to g, then the solutions u^{ϵ} of $(\mathrm{HJ} \epsilon)$ with initial datum $g_{\epsilon} F_{\epsilon}$ locally converge to the solution u of (HJ) with initial datum g.

