A Lagrange-Galerkin scheme for first order mean field games

Francisco J. Silva (XLIM, Université de Limoges)

Based on a joint work with Elisabetta Carlini (La Sapienza) and Ahmad Zorkot (Université de Limoges).

Réunion de lancement ANR COSS

Université Paris Cité, March 16th, 2023

Plan

Introduction

Approximation of the HJB equation

Approximation of the continuity equation

Approximation of the MFG system

Plan

Introduction

Approximation of the HJB equation

Approximation of the continuity equation

Approximation of the MFG system

Introduction

First order (or deterministic) Mean Field Games (MFGs) were first introduced in Lasry-Lions'07 in the following form

$$-\partial_t v + H(x, D_x v) = F(x, m(t)) \text{ in } [0, T] \times \mathbb{R}^d,$$

$$v(T, x) = G(x, m(T)) \text{ in } \mathbb{R}^d,$$

$$\partial_t m - \text{div}(D_p H(x, D v) m) = 0 \text{ in } [0, T] \times \mathbb{R}^d,$$

$$m(0, \cdot) = m_0^* \text{ in } \mathbb{R}^d.$$
(MFG)

▶ The Hamiltonian $H: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is given by

$$H(x,p) = \sup_{a \in \mathbb{R}^d} \left\{ \langle a,p \rangle - L(x,a) \right\}, \quad \text{where } L: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}.$$

▶ $F, G: \mathbb{R}^d \times \mathcal{P}_1(\mathbb{R}^d) \to \mathbb{R}$ and $m_0^* \in L^p(\mathbb{R}^d)$ for some $p \in]1, \infty[$.

- ▶ When the Hamiltonian *H* is coercive, the existence of solutions to (MFG) has been studied in Lasry-Lions'07 and in Cardaliaguet-Hadikhanloo'17.
- ▶ If *H* is not coercive, the existence question has been studied in Achdou-Mannucci-Marchi-Tchou'20 and in Cannarsa-Mendico'20.
- The notion of MFG equilibria can be stated in terms of probability measures over the set of paths $C([0,T];\mathbb{R}^d)$.
 - ► The existence of equilibria for this relaxed, also called Lagrangian, form can be shown under some rather general assumptions on the data.
 - ▶ Under some regularity assumptions on the data, then a solution to (MFG) can be obtained from a relaxed equilibrium.

Concerning the numerical approximation of solutions to (MFG):

- ► In the coercive case:
 - In Camilli-S.'12, for $H(x,p)=|p|^2/2$, a semi-discrete SL scheme is proposed and convergence is shown.
 - A fully-discrete version proposed in Carlini-S.'14, for $H(x,p)=|p|^2/2$, is shown to converge when d=1.
 - Extensions to the second order case have been studied in Carlini-S'15-18 and to the case of fractional and non-local operators in Chowdhury-Ersland-Jakobsen'22.
 - An approximating MFG with discrete time and finite state space is proposed in Hadikhanloo-S.'19. Convergence is obtained in general dimensions.
- ► In the non-coercive case:
 - ► See Gianatti-S'22.

Assumptions

In what follows, C > 0 denotes a generic constant.

▶ L is of class C^2 , and for all x, $a \in \mathbb{R}^d$, we have

$$L(x, a) \le C(|a|^2 + 1),$$

$$|D_x L(x, a)| \le C(|a|^2 + 1),$$

$$C|b|^2 \le D_{aa}^2 L(x, a)(b, b),$$

$$D_{xx}^2 L(x, a)(y, y) \le C(|a|^2 + 1)|y|^2.$$

These assumptions on L imply that H has quadratic growth and

$$|D_p H(x,p)| \le C(1+|p|)$$
 for all $x, p \in \mathbb{R}^d$.

A typical example is $H(x,p) = a(x)|p|^2 + \langle b(x),p\rangle$, with a and b of class C_b^2 and a bounded from below by a strictly positive constant.

▶ F and G are bounded, continuous and, for every $\mu \in \mathcal{P}_1(\mathbb{R}^d)$,

$$|F(x,\mu) - F(y,\mu)| + |G(x,\mu) - G(y,\mu)| \le C|x - y|,$$

$$F(x+y,\mu) - 2F(x,\mu) + F(x-y,\mu) \le C|y|^2,$$

$$G(x+y,\mu) - 2G(x,\mu) + G(x-y,\mu) \le C|y|^2.$$

Notice that no differentiability is supposed on F and G. Thus, we can consider functionals of the form

$$F(x,\mu) = \min\{|x - \bar{x}|^2, R\} + f_0(x,\mu) \text{ for } \bar{x} \in \mathbb{R}^d, R > 0.$$

▶ m_0^* has compact support and $m_0^* \in L^p(\mathbb{R}^d)$ (for some $p \in]1, \infty]$).

Approximation of the HJB equation

Plan

Introduction

Approximation of the HJB equation

Approximation of the continuity equation

Approximation of the MFG system

Approximation of the HJB equation

Let $\mu \in C([0,T];\mathcal{P}_1(\mathbb{R}^d))$ and consider the HJB equation

$$\begin{split} -\partial_t v + H(x,Dv) &= F(x,\mu(t)) \quad \text{in } [0,T] \times \mathbb{R}^d, \\ v(T,x) &= G(x,\mu(T)) \quad \text{in } \mathbb{R}^d. \end{split}$$

If $v[\mu]$ denotes its solution, then for every $(t,x) \in [0,T] \times \mathbb{R}^d$,

$$\begin{split} v[\mu](t,x) &= \inf \ \int_t^T \Big(L(\gamma(s),\alpha(s)) + F(\gamma(s),\mu(s)) \Big) \mathrm{d}s + G(\gamma(T),\mu(T)) \\ \text{s.t.} \quad \dot{\gamma}(s) &= -\alpha(s) \quad \text{in }]s,T[, \quad \gamma(t) = x. \end{split}$$

Proposition

The value function is uniformly bounded, and the following hold:

(Lip)
$$|v[\mu](t,x) - v[\mu](t,y)| \le C|x-y|,$$

(SC)
$$v[\mu](x+y,\mu) - 2v[\mu](x,\mu) + v[\mu](x-y,\mu) \le C|y|^2$$
.

Using the properties above for $v[\mu],$ one can show the existence of $m[\mu]$ solving

$$\partial_t m - \operatorname{div}(D_p H(x, D_x v) m) = 0$$
 in $]0, T[\times \mathbb{R}^d, m(0) = m_0^*]$

and such that

- $ightharpoonup m[\mu](t,\cdot)$ has a compact support, independent of μ .
- "The mass does not concentrate too much in finite time"

$$||m[\mu](t,\cdot)||_{L^p} \le C||m_0^*||_{L^p}.$$

As in Carlini-S'14, given $(\Delta t, \Delta x)$ we consider the following SL scheme for the HJB equation:

$$\begin{aligned} v_{k,i} &= \inf_{a \in \mathbb{R}^d} \left[\Delta t L(x_i, a) + I^1[v_{k+1, \cdot}](x_i - \Delta t a) \right] + \Delta t F(x_i, \mu(t_k)), \\ v_{N,i} &= G(x_i, \mu(T)), \end{aligned}$$

where, given ϕ defined on $\mathcal{G}_{\Delta x} = \{x_i = \Delta x \, | \, i \in \mathbb{Z}^d \}$,

$$I^1[\phi](x) = \sum_{i \in \mathbb{Z}^d} \beta^1_i(x) \phi(x_i) \quad \text{for all } x \in \mathbb{R}^d,$$

with $\{\beta_i^1 \mid i \in \mathbb{Z}^d\}$ being a Q_1 -basis on the regular mesh $\mathcal{G}_{\Delta x}$.

This scheme preserves:

- ► The Lipschitz property (Lip).
- ► The semiconcavity (SC).

We set

$$v^{\Delta t, \Delta x}[\mu](t, x) = I[v_{k, \cdot}](x)$$
 if $t \in [t_k, t_{k+1}], x \in \mathbb{R}^d$,

and, given $\varepsilon > 0$ and a standard mollifier ρ_{ε} , we set $\Delta = (\Delta t, \Delta x, \varepsilon)$ and

$$v^{\Delta}[\mu](t,x) = \left(\rho_{\varepsilon} * v^{\Delta t, \Delta x}[\mu](t,\cdot)\right)(x).$$

- $ightharpoonup v^{\Delta}[\mu]$ preserves the Lipschitz property.
- ► The following semi-concavity estimate holds:

$$\langle D_{xx}^2 v^{\Delta}[\mu](t,x)y,y\rangle \le C\left(1 + \frac{(\Delta x)^2}{\varepsilon^4}\right)|y|^2.$$

▶ Under suitable assumptions on the parameters, if $\mu_n \to \mu$ and $\Delta_n \to 0$, then $v^{\Delta_n}[\mu_n] \to v[\mu]$ uniformly over compact sets, and $D_x v^{\Delta n}[\mu_n] \to D_x v[\mu]$ a.e.

Approximation of the continuity equation

Plan

Introduction

Approximation of the HJB equation

Approximation of the continuity equation

Approximation of the MFG system

Approximation of the continuity equation

We focus on the discretization of the continuity equation

$$\partial_t m - \operatorname{div}(D_p H(x, \textcolor{red}{D_x} v^\Delta[\mu]) m) = 0 \quad \text{in }]0, T[\times \mathbb{R}^d, \quad m(0) = m_0^*,$$

Since v^{Δ} is smooth w.r.t. the state, this equation has a unique solution

$$m^{\Delta}[\mu](t,\cdot) = \Phi^{\Delta}[\mu](0,t,\cdot) \sharp m_0^*,$$

where, for $s \leq t$, $\Phi^{\Delta}[\mu](s,t,x)$ is the the solution, at time t, of the ODE:

$$\dot{\gamma}(r) = -D_p H\Big(\gamma(r), D_x v[\mu](r, \gamma(r))\Big) \quad \text{in }]s, T[, \quad \gamma(s) = x.$$

Equivalently, for every $0 \leq s \leq t \leq T$, and φ , integrable w.r.t. $m^{\Delta}[\mu](s)$,

$$\int_{\mathbb{R}^d} \varphi(x) \mathrm{d} m^{\Delta}[\mu](t)(x) = \int_{\mathbb{R}^d} \varphi(\Phi^{\Delta}[\mu](s,t,x)) \mathrm{d} m^{\Delta}[\mu](s)(x). \tag{*}$$

• Approximate $\Phi^{\Delta}[\mu](t_k, t_{k+1}, x)$ by

$$\Phi_k^{\Delta}[\mu](x) = x - \Delta t D_p H(x, D_x v^{\Delta}[\mu](t_k, x)).$$

lackbox Let $\{eta_i\}_{i\in\mathbb{Z}^d}$ be a FE basis and approximate $m^\Delta[\mu](t_k)$ by

$$\mathsf{m}^{\Delta}[\mu](t_k,x) = \sum_{i \in \mathbb{Z}^d} m_{k,i} \beta_i(x)$$

• Using this approximation and taking $\varphi = \beta_j$ in (*), we get

$$\sum_{i \in \mathbb{Z}^d} m_{k+1,i} \int_{\mathbb{R}^d} \beta_i(x) \beta_j(x) dx = \sum_{i \in \mathbb{Z}^d} m_{k,i} \int_{\mathbb{R}^d} \beta_j(\Phi_k^{\Delta}[\mu](x)) \beta_i(x) dx.$$

In what follows, we take

$$\beta_i = \beta_i^0 = \mathbb{I}_{E_i}, \quad \text{where } E_i = [x_i - \Delta x/2, x_i + \Delta x/2]^d.$$

This yields the following LG scheme

$$\begin{split} m_{k+1,i} &= \frac{1}{(\Delta x)^d} \sum_j m_{k,j} \int_{E_j} \beta_i^0(\Phi_k^\Delta[\mu](x)) \mathrm{d}x, \\ m_{0,i} &= \frac{1}{(\Delta x)^d} \int_{E_i} m_0^*(x) \mathrm{d}x. \end{split} \tag{LG}$$

Since

$$\int_{E_j} \beta_i^0(\Phi_k^{\Delta}[\mu](x)) \mathrm{d}x = \mathcal{L}^d\Big(\Phi_k^{\Delta}[\mu]^{-1}(E_i) \cap E_j\Big),$$

this scheme coincides with the one proposed in Piccoli and Tosin.¹

Given a solution to (LG), if $t \in [t_k, t_{k+1})$, set

$$\mathsf{m}^{\Delta}[\mu](t,x) = \left(\frac{t_{k+1} - t}{\Delta t}\right) \sum_{i \in \mathbb{Z}^d} m_{k,i} + \left(\frac{t - t_k}{\Delta t}\right) \sum_{i \in \mathbb{Z}^d} m_{k+1,i}.$$

 $^{^1}$ B. Piccoli and A. Tosin. Time-evolving measures and macroscopic modeling of pedestrian flow. *Arch. Ration. Mech. Anal.* 2011

The approximation $\mathsf{m}^\Delta[\mu]$ satisfies

- $\qquad \qquad \mathbf{m}^{\Delta}[\mu] \in C([0,T];\mathcal{P}_1(\mathbb{R}^d)).$
- ▶ There exists $C^* > 0$ such that $\sup(\mathsf{m}^{\Delta}[\mu](t,\cdot)) \subseteq \overline{B}(0,C^*)$.
- ▶ The map $[0,T] \ni t \mapsto \mathsf{m}^{\Delta}[\mu](t,\cdot) \in \mathcal{P}_1(\mathbb{R}^d)$ is Lipschitz continuous.
- ▶ If $\Delta x = O(\Delta t)$ and $\Delta t = O(\varepsilon^2)$ then

$$\|\mathbf{m}^{\Delta}[\mu](t,\cdot)\|_{L^p} \leq C \|m_0^*\|_{L^p}.$$

The proof of the L^p -stability mainly relies on the following facts:

- $\Delta t/\varepsilon$ small enough $\Rightarrow \Phi_k^{\Delta}[\mu]$ is one-to-one.
- The estimate on $D^2_{xx}v^{\Delta}[\mu](t_k,\cdot)$ implies that

$$\left| \det \left(D_x \Phi_k^\Delta[\mu](x) \right) \right|^{-1} \leq 1 + C \Delta t.$$

Approximation of the MFG system

Plan

Introduction

Approximation of the HJB equation

Approximation of the continuity equation

Approximation of the MFG system

Approximation of the MFG system

► The MFG system is discretized as follows:

Find
$$\mu$$
 such that $\mu = m^{\Delta}[\mu]$. (MFG) $^{\Delta}$

Using the Brouwer's fixed point theorem, one shows that $(MFG)^{\Delta}$ admits at least one solution.

Convergence holds in general state dimensions.

Theorem

Let $\Delta_n = (\Delta t_n, \Delta x_n, \varepsilon_n) \in]0, \infty[^3$, denote by \mathbf{m}_n a solution to $(\mathrm{MFG})^{\Delta_n}$, and set $v_n = v^{\Delta_n}[\mathbf{m}_n]$.

Assume that, as $\Delta_n \to 0$, $\Delta x_n = o(\Delta t_n)$ and $\Delta t_n = O(\varepsilon_n^2)$. Then, up to some subsequence, (v_n, m_n) converges to a solution (v^*, m^*) to (MFG).

Plan

Introduction

Approximation of the HJB equation

Approximation of the continuity equation

Approximation of the MFG system

Numerical results

► In order to implement the scheme, we follow Morton-Priestley-Süli'88 by considering the following approximation

$$\Phi_k^{\Delta}[\mu](x) \sim x - \Delta t D_p H\left(x_i, D_x v^{\Delta}[\mu](t_k, x_i)\right) \quad \text{if } x \in E_i$$

to obtain, surprisingly, that

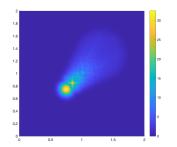
$$\int_{E_j} \beta_i^0(\Phi_k^{\Delta}[\mu](x)) dx = \beta_i^1(\Phi_k^{\Delta}[\mu](x_j)),$$

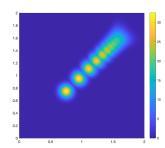
and, hence, the LG scheme implemented with this approximation coincides with the scheme proposed in Carlini-S'14.

In the numerical test below, we take d=2, T=1,

$$m_0^*(x) = \frac{\nu(x)}{\int_{[0,2]^2} \nu(x) \mathrm{d}x} \quad \text{with } \nu(x) = e^{\frac{-|x-x_0|^2}{0.01}} \text{ and } x_0 = (0.75, 0.75),$$

$$H(x,p)=|p|^2/2, \quad F(x,m)=\gamma \min\{R,|x-x_f|^2\}+(\rho_\sigma*m)(x), \quad G=0,$$
 with $x_f=(1.75,1.75).$ In the figures below, we display the distributions for $\gamma=1$ and $\gamma=3$.





References

- Y. Achdou and M. Laurière. Mean field games and applications: numerical aspects. Lecture Notes in Math., 2020.
- E. Calzola, E. Carlini, and F. J. Silva. A high-order scheme for mean field games. Preprint, 2022.
- F. Camilli and F. J. Silva. A semi-discrete in time approximation for a first order-finite mean field game problem. Network and Heterogeneous Media, 2012.
- 4. E. Carlini and F. J. Silva. A fully discrete semi-Lagrangian scheme for a first order mean field game problem. *SIAM J. Numer. Anal.*
- I. Chowdhury, O. Ersland, and E.R. Jakobsen. On numerical approximations of fractional and nonlocal mean field games. Found Comput Math, 2023.
- J. Gianatti and F. J. Silva. Approximation of deterministic mean field games with control-affine dynamics. *Preprint*, 2022.
- S. Hadikhanloo and F. J. Silva. Finite mean field games: fictitious play and convergence to a first order continuous mean field game. J. Math. Pures Appl., 2019.