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Two classical models of traffic flow

General goal: derive traffic flow models on junction from microscopic models.

Two kind of models for traffic flow on the line:

1) Microscopic models: e.g., the follow-the-leader model is a system of ODEs

d
dt Uiptq “ V pUi`1ptq ´ Uiptqq, t ě 0,@i P Z.

2) Macroscopic models: e.g., the Lighthill-Whitham-Richards (LWR) model is the scalar
conservation law

Btρ` pρvpρqqx “ 0 in Rˆ p0,`8q,

(M. J. Lighthill and G. B. Whitham (1955), P. I. Richards (1956))



Goal of the talk

§ Discuss how to derive the LWR model

Btρ` pρvpρqqx “ 0 in Rˆ p0,`8q,

from the follow-the-leader model
d
dt Uiptq “ V pUi`1ptq ´ Uiptqq, t ě 0,@i P Z.

§ Well-known when all the vehicles are identical and on a single road. Then
f pρq “ ρvpρq “ ρV p1{ρq (Aw, Klar, Materne, and Rascle (2002))

§ Main contributions: we address the case where
§ the vehicles have a different behavior
§ and on a bifurcation.
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Some references

Topic at the intersection of scalar conservation law, Hamilton-Jacobi and stochastic
homogenization ùñ Many many references!

Rigorous derivation of the macroscopic model from the microscopic one:
§ For one type of vehicles: B. Argall, E. Cheleshkin, J. M. Greenberg, C. Hinde, and P.-J. Lin (2002), A. Aw, A. Klar,

T. Materne, and M. Rascle (2002), M. Di Francesco and M. D. Rosini (2015), P. Goatin and F. Rossi (2017), H. Holden
and N. H. Risebro (2018),..

§ For several types of cars: N. Chiabaut, L. Leclercq, and C. Buisson (2010), N. Forcadel and W. Salazar (2015)

Analysis of microscopic models on a junction
§ R.M. Colombo, H. Holden, and F. Marcellini (2020)

Analysis of macroscopic models on a junction
§ Formulation in terms of conservation laws:

G.D. Adimurthi, G. Veerappa (2003), E. Audusse, B. Perthame (2005), M. Garavello and B. Piccoli (2006), R. Burger, K.H.
Karlsen, J. Towers (2009), M. Herty, J. P. Lebacque, and S. Moutari (2009), B. Andreianov, K.H. Karlsen, N.H. Risebro
(2010), G. M. Coclite, M. Garavello, and B. Piccoli (2015), A. Bressan, and K.T. Nguyen (2015), B. Andreianov, and
M. D. Rosini (2018), ..., M. Musch, U.S. Fjordholm and N.H. Risebro (2022)

§ Formulation in terms of Hamilton-Jacobi equations:
C. Imbert, R. Monneau, and H. Zidani (2013), G. Galise, C. Imbert, and R. Monneau, R. (2015), P.-L. Lions-P. Souganidis
(2016, 2017), N. Forcadel, W. Salazar, and M. Zaydan (2018), N. Forcadel, and W. Salazar (2020),...

(Stochastic) homogenization of HJ equations, with works by
Armstrong, Caffarelli, C., Ciomaga, Davini, Feldman, Kosygina, Lin, Lions, Nolen, Novikov, Papanicolau, Schwab, Seeger, Smart,
Souganidis, Tran, Varadhan, Yilmaz, Zeitouni...
ÝÑ strongly inspired by the works of Kesten (’93) and Alexander (’93) in first passage percolation.
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A random microscopic model

We consider a random version of the follow-the-leader model:
d
dt Uiptq “ VZi pUi`1ptq ´ Uiptqq, t ě 0,@i P Z,

where
§ Infinitely many cars, indexed by i P Z,
§ Ui denotes the position of car i at time t,
§ Cars are ordered: Uiptq ď Ui`1ptq for all t, i ,
§ The velocity V “ VZi ppq of car i depends on the distance p of car i to car i ` 1 and
on the “type” Zi of car i

§ The types are pZiq are i.i.d. and take values in a finite set Z.

(cf. N. Chiabaut, L. Leclercq, and C. Buisson (’10))



Assumptions

On the velocity map V : Z ˆ R` Ñ R, we assume the following:
pH1q For any z P Z, p Ñ Vzppq is Lipschitz continuous;
pH2q For any z P Z, there exists hz

0 ą 0 such that Vzppq “ 0 for all p P r0, hz
0s;

pH3q For any z P Z, p Ñ Vzppq is increasing in rhz
0,`8q;

pH4q There exists Vmax ą 0 and, for any z P Z, there exists V z
max ď Vmax, such that

limpÑ`8 Vzppq “ V z
max.



The (integrated) distribution of cars

§ For ε ą 0, we consider an initial condition pU0
i q and let pUi q be the solution of

d
dt

Ui ptq “ VZi pUi`1ptq ´ Ui ptqq, t ě 0,@i P Z.

with initial condition pU0
i q.

§ We are interested in the distribution of vehicles
ÿ

iPZ
δU i ptq.

§ (Integrated distribution) We set

Nωpx , tq “
ÿ

iPZ, iď0
δUi ptqppx ,`8qq ´

ÿ

iPZ, ią0
δUi ptqpp´8, xsq.

Remark: Bx Nωp¨, tq “ ´
ř

iPZ δUi ptq.
§ (Scaled integrated distribution)

νε,ωpx , tq “ εNωpx{ε, t{εq @px , tq P Rˆ r0,`8q.



Main result for the problem on the line

Theorem (C.-Forcadel, (SIMA ’21))
§ Assume that νε,ωp¨, 0q converges locally uniformly and a.s. to the Lipschitz continuous map
ν0 : RÑ R.

§ Then the νε,ω converges a.s. and locally uniformly to the unique (Lipschitz) continuous
viscosity solution ν to

"

Btν ` H̄pBxνq “ 0 in Rˆs0,`8r
νpx , 0q “ ν0pxq in R

§ where the effective Hamiltonian H̄ is given by H̄ppq “ pV̄ p´1{pq with
V̄ : r0,`8q Ñ r0,minzPZ V z

maxs defined by
§ V̄ ppq “ 0 if p ď h̄0 where h̄0 :“ ErhZ0

0 s,
§ and ErV´1

Z0
pV̄ ppqqs “ p if p ą h̄0.



Link with the Lighthill-Whitham-Richards (LWR) model

We come back to the (rescaled) empirical density of cars:

ρεptq “ ε
ÿ

iPZ

δεUε
i pt{εq, t ě 0.

Corollary [Convergence to the LWR model]
As εÑ 0, ρεptq converges, a.s., in distribution and locally uniformly in time, to

ρpx , tq :“ ´Bxνpx , tq,

where ν is the solution of the limit HJ equation. Moreover ρ is the entropy solution of the
LWR model

pLWRq Btρ` Bx pρv̄pρqq “ 0 in Rˆ R`,

with initial condition Bxν0p¨q and where the fundamental diagram is given by
v̄pρq “ V̄ p1{ρq.



Ingredients of proof

§ Localization argument: approximate finite speed of propagation,

§ Existence of correctors,

§ Standard techniques in homogenization of HJ equations



Approximate finite speed of propagation

Lemma
There exists β ą 0 such that, if pUi q and pŨi q are two solutions of the equation with
Ui p0q ď Ũi p0q for i ď i0 (where i0 P Z), then

Ui ptq ď Ũi ptq ` 2pi´i0qeβt @i ď i0, t ě 0.

Consequence: comparison principle.



Existence of correctors

Given θ P p0,Vmaxq, we consider the random sequence pcθi q defined by

cθ0 “ 0, cθi`1 “ cθi ` V´1
Zi
pθq.

In other words,
VZi pc

θ
i`1 ´ cθi q “ θ @i P Z.

Central remark: The family pŨθ
i ptq :“ cθi ` tθqiPZ is a self-similar and “almost planar”

solution to the system

d
dt Uiptq “ VZi pUi`1ptq ´ Uiptqq, t ě 0,@i P Z,

Indeed
d
dt Ũθ

i ptq “ θ “ VZi pc
θ
i`1 ´ cθi q “ VZi pŨ

θ
i`1ptq ´ Ũθ

i ptqq.

while, by the law of large numbers, a.s.,

Ũθ
n ptq
n “

cθn
n `

tθ
n “

1
n

n´1
ÿ

i“0

V´1
Zi
pθq `

tθ
n Ñ E

”

V´1
Z0
pθq

ı

as n Ñ ˘8.
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θ
i`1ptq ´ Ũθ
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Construction of the effective velocity

Recall that h̄0 :“ ErhZ0
0 s. Given p ą h̄0, we consider the solution Ūp to the problem with

linear initial condition:
d
dt Ūp

i ptq “ VZi pŪ
p
i`1ptq ´ Ūp

i ptqq, t ě 0, Ūp
i p0q “ p i @i ě 0.

Proposition [Convergence for linear initial conditions]
There exists Ω0 P F with PpΩ0q “ 1 such that for every p ě 0, i P N and ω P Ω0

lim
tÑ`8

Ūp
i ptq
t “ V̄ ppq @i ě 0,

where the continuous and non-decreasing map V̄ : R` Ñ R` is defined by
§ V̄ ppq “ 0 if p ď h̄0 where h̄0 :“ ErhZ0

0 s,
§ ErV´1

Z0
pV̄ ppqqs “ p if p ą h̄0.
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The model on a bifurcation

 
We consider a traffic model with

§ One incoming road,
§ K outgoing roads,
§ A bifurcation between ´R0 and 0,
§ No overtaking (expect between ´R0 and 0),

§ We set R “ pp´8, 0s ˆ t0uq Y
K
ď

k“1
pr0,`8q ˆ tkuq.



Types and order

§ Infinitely many cars, indexed by i P Z,
§ The type of car i is denoted by Zi ,

§ The Zi are i.i.d. with values in a finite set Z,
§ The outgoing road Ti P t1, . . . ,Ku chosen by car i is determined by Zi : namely Ti :“ T pZi q

where T : Z Ñ t1, . . . ,Ku,

§ For k P t1, . . . ,Ku, we set πk “ P rTi “ ks: this is the proportion of cars taking road k.

§ The cars are “ordered”: the car in front of car i is
§ i ` 1 if Ui ptq ă ´R0,
§ `i if Ui ptq ą 0, where `i “ inftj ą i , Tj “ Tiu,
§ i ` 1 and `i if Ui ptq P r´R0, 0s.



Dynamics

The dynamics of the cars is given by
d
dt

Ui ptq “ VZi

`

Ui`1ptq ´ Ui ptq , U`i ptq ´ Ui ptq , Ui ptq
˘

, t ě 0, i P Z.

where
Vz pe1, e2, xq “

"

Ṽ 0
z pe1q if x ď ´R0

Ṽ k
z pe2q if x ě 0 and k “ T pzq



The (integrated) distribution of cars

§ Fix an initial condition pU0
i qiPZ and let U be the associate solution.

§ (Integrated distribution) We set, for k P t1, . . . ,Ku and px , tq P r0,`8q ˆ r0,`8q,

Nωpx , k, tq “
ÿ

iPZ, iď0, Ti“k
δUi ptqppx ,`8qq ´

ÿ

iPZ, ią0, Ti“k
δUi ptqpp´8, xsq.

and for x ď 0

Nωpx , 0, tq “
ÿ

iPZ
δUi ptqppx ,`8qq ´

ÿ

iPZ, ią0, Ti“k
δUi ptqpp´8, xsq.

§ (Scaled integrated distribution)

νε,ωpx , k, tq “

$

&

%

εpπkq´1Nωpx{ε, k, t{εq @px , k, tq P r0,`8q ˆ t1, . . . ,Ku ˆ r0,`8q

εNωpx{ε, 0, t{εq @px , tq P p´8, 0s ˆ p´8, 0s



Assumptions

pH1q For any z P Z, the map pe1, e2, xq Ñ Vz pe1, e2, xq is Lipschitz continuous from R2
` ˆ R to

R` and nondecreasing with respect to the first two variables;
pH2q There exists emax ą ∆min ą 0 and 0 ă R2 ă R1 ă R0, with R0 ą emax, such that for any

z P Z, for any pe1, e2, xq P R2
` ˆ R,

(i) Vz pe1, e2, xq “ 0 if (e1 ď ∆min and x ď ´R2) or if (e2 ď ∆min and x ě ´R1),
(ii) Vz pe, e2, xq “ Vz pemax, e2, xq and Vz pe1, e, xq “ Vz pe1, emax, xq if e ě emax;

pH3q There exists Ṽ 0, . . . , Ṽ K : r0,`8q Ñ r0,`8q such that

Vz pe1, e2, xq “
"

Ṽ 0
z pe1q if x ď ´R0

Ṽ k
z pe2q if x ě 0 and T pzq “ k.

pH4q For any z P Z and any k P t0, . . . ,Ku, there exists hk
max,z P p∆min, emaxs such that

p Ñ Ṽ k
z ppq is increasing and concave in r∆min, hk

max,z s and constant on rhk
max,z ,`8q;

pH5q There exists κ ą 0 such that, for any z P Z,

(i) Vz pe1, e2, xq “ Ṽ 0
z pe1q if e1 ď e2, x ď ´R2 and Vz pe1, e2, xq ď κ,

(ii) Bx Vz pe1, e2, xq ě 0 if x P r´R1, 0s and Vz pe1, e2, xq ď κ,
(iii) Vz pe1, e2, xq ą 0 if e1 ^ e2 ą ∆min.



Main convergence result

Theorem (C.-Forcadel (To appear in ARMA))
Under the previous assumptions on V , there exists a constant Ā ă 0 (the flux limiter) such that, if
νεp¨, ¨, 0q converges locally uniformly in R and a.s. to a Lipschitz continuous map ν0 : R Ñ R,
then νε converges locally uniformly and a.s. in Rˆ r0,`8q to the unique continuous viscosity
solution of the Hamilton-Jacobi equation with flux limiter Ā:

$

’

’

’

&

’

’

’

%

Btνpx , k, tq ` H̄kpBxνpx , k, tqq “ 0 in pRzt0uq ˆ p0,`8q

Btν `maxtĀ, H̄0,`pB0νq, H̄1,´pB1νq, . . . , H̄K ,´pBKνqqu “ 0 at x “ 0

νpx , k, 0q “ ν0px , kq in R.

The homogenized Hamiltonian H̄k : Let V̄ k be the homogenized velocities on the single road k.
We have set

H̄0ppq “ pV̄ 0p´1{pq, H̄kppq “ pV̄ kp´1{pπkpqq p P p´8, 0q

Viscosity solutions: test functions are continuous on R and C1 on each branch.

Notation: H̄0,` (resp. H̄k,´ is the largest nondecreasing map below H̄0 (resp. the largest
nonincreasing map below H̄k).
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νεp¨, ¨, 0q converges locally uniformly in R and a.s. to a Lipschitz continuous map ν0 : R Ñ R,
then νε converges locally uniformly and a.s. in Rˆ r0,`8q to the unique continuous viscosity
solution of the Hamilton-Jacobi equation with flux limiter Ā:
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Ingredients of proof

§ Existence and uniqueness (by comparison) of the viscosity solution on a junction are due to
Imbert-Monneau (’13).
(see also Lions-Souganidis (’16) and the monograph by Barles-Chasseigne (’18))

§ Localization argument: extension of the “almost” finite speed of propagation,
ùñ any limit (up to a subsequence) of νε solves the HJ outside the junction.

§ Main difficulty: construction of the flux limiter Ā



Construction of Ā

§ We assume for simplicity that H̄0 “ H̄1 “ ¨ ¨ ¨ “ H̄K “: H̄.

§ Let e ą 0 be such that H̄p´1{eq “ minp H̄ppq and let pUe,i q be the solution with initial
condition Ue,i p0q “ ei for i P Z.

§ The time function: For t ě 0, let θeptq be the number of vehicle having gone through 0
between time 0 and time t:

θeptq “ 7 ti P Z, Ds P r0, ts with Ue,i psq “ 0u .

Theorem (Limit of the time function)
The limit ϑ̄e of θeptq{t exists a.s. as t Ñ `8, with ϑ̄e ď ´min H0. The flux limiter is then
Ā :“ ´ϑ̄e .

Main steps of proof:
§ A concentration inequality: There exists C ą 0 such that

P r|θeptq ´ E rθeptqs | ě εts ď C expt´ε2t{Cu.

§ Superadditivity property: for h̃ ă ´minp H̄ppq, set M̄e,h̃ptq “ infsPr0,ts E rθepsqs ´ h̃s. Then

M̄e,h̃pt1 ` t2q ě M̄e,h̃pt1q ` M̄e,h̃pt2q ´ Cp1` plnpt1 ` t2qq1{8pt1 ` t2q7{8q.
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The conservation law on the network

Recall that the limit flow ν solves the Hamilton-Jacobi equation
$

’

’

’

&

’

’

’

%

Btνpx , k, tq ` H̄kpBxνpx , k, tqq “ 0 in pRzt0uq ˆ p0,`8q

Btν `maxtĀ, H̄0,`pB0νq, H̄1,´pB1νq, . . . , H̄K ,´pBKνqqu “ 0 at x “ 0

νpx , k, 0q “ ν0px , kq in R.

Let us set
ρpt, x , kq :“ ´πkBxνpt, x , kq.

Then (outside of the junction) ρ is an entropy solution of the scalar conservation law

Btρpt, x , kq ` pf kpρpt, x , kqqx “ 0 in p0,`8qˆ
o
R,

where f kpvq “ ´πk H̄kp´v{πkq.

Lemma [Detailed Rankine-Hugoniot condition]
We have, for any k P t1, . . . ,Ku,

f kpρpt, 0, kqq “ πk f 0pρpt, 0, 0qq a.e. t ą 0.

ÝÑ One needs however stronger conditions to select the solution (Adimurthi, Mishra and
Veerappa Gowda (’03))



Stationary solutions

For the Hamilton-Jacobi, stationary solutions are of the form

upt, x , kq “ ´pπkq´1ekx ´ tHkp´ek{π
kq

where e “ pe0, . . . , eK q P RK`1 and
1. (continuity at x “ 0) Hkp´ek{π

kq “ H0p´e0q, i.e.,

f kpekq “ πk f 0pe0q @k P t1, . . . ,Ku.

2. (condition on the junction) we have H0p´e0q ě Ā and

either H0p´e0q “ Ā, or H0,`p´e0q “ H0p´e0q,

or Hk,´p´pπkq´1ekq “ Hkp´pπkq´1ekq for some k P t1, . . . ,Ku.

which can be written as:

f 0pe0q ď ´Ā and either f 0pe0q “ ´Ā, or f 0,`pe0q “ f 0pe0q,

or f k,´pekq “ f kpekq for some k P t1, . . . ,Ku.

§ Such e P RK`1 should correspond to the stationary solutions of the conservation law on the
junction.

§ Following [Andreianov, Karlsen, and Risebro, ’11] and [Musch, Fjordholm and Risebro, ’22]
we define the germ G as the set e P RK`1 satisfying condition (1) and (2).
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The notion of germs

Following [Andreianov, Karlsen, and Risebro, ’11] and [Musch, Fjordholm and Risebro, ’22],
§ a solution ρ to the conservation law on the junction associated with the germ G is an entropy

solution on p0,`8qˆ
o
R satisfying

p˚q ρpt, 0q P G a.e. t ą 0.

(ρpt, 0q is the trace of ρ in the sense of Panov (’07))
§ Existence, uniqueness and stability (L1 contraction) of solutions are proved when G satisfies

the Rankine-Hugoniot condition and is “mutually consistent” and “maximal”:
§ The germ G is mutually consistent if for any U “ puj q, Ū “ pūj q P G,

q0pu0, ū0q ě
K
ÿ

j“1
qj puj , ūj q

where qj pc 1, cq :“ pf j pc 1q ´ f j pcqqsignpc 1 ´ cq (j “ 0, . . .K).
§ The germ G is maximal if, for any U “ puj q satisfying the Rankine-Hugoniot condition,

”

q0pu0, ū0q ě
K
ÿ

j“1
qj puj , ūj q @Ū “ pūj q P G

ı

ùñ U P G.



Analysis of our germs

Recall that the germs arising in our analysis if given by

G “tU “ puj q, such that uj “ πj u0 @j “ 1, . . .K ,

f 0pu0q ď ´Ā and
”

either f 0pu0q “ ´Ā, or f 0,`pu0q “ f 0pu0q,

or f k,´pukq “ f kpukq for some k P t1, . . . ,Ku
ı

.

Lemma
§ If K “ 1, the germ G is mutually consistent and maximal.
§ If K ě 2, the germ G is not mutually consistent in general.

Theorem [C.-Forcadel-Girard-Monneau]
If K “ 1 and u solves HJ, then ρ :“ ´Bx u satisfies (*).

Idea of proof:
§ “Standard” outside the junction (Caselles (’92), Colombo-Perrollaz-Sylla (’22))
§ By discretization (numerical schemes) on the junction
§ ... or by approximation by very smooth data.



Summary and open problems

In this talk we have
§ derived (in terms of HJ eq) the macro behavior of cars on a bifurcation from its micro
behavior

§ made the link with conservation laws with discontinuous flux when K “ 1

Some open problems:
§ Convergence rate

§ Obtain a complete relationship between formulations in terms of conservation law and
Hamilton-Jacobi equations when K ě 2

§ Models with several lines, incoming and outgoing roads, overtake...

Thank you!
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