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We consider a junction consisting of m incoming and n outgoing edges.

Incoming edges: x ∈ Ωi = R−, i = 1, . . . ,m ;
Outgoing edges: x ∈ Ωj = R+, j = m + 1, . . . ,m + n ;
The junction is located at x = 0.
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On each edge we consider the evolution problem

∂tρh + ∂x fh(ρh) = 0, h = 1, . . . ,m + n,

ρh conserved quantity,
fh flux : possibly different, non degenerate nonlinear and bell-shaped

fh : [0,R]→ R+, Lipschitz continuous,
fh(0) = 0 = fh(R),
∃ρ̄ ∈ [0,R], such that f ′h(ρ)(ρ̄− ρ) > 0, for a.e. ρ ∈ [0,R].

We postulate conservation at the junction

d
dt

m+n∑
h=1

∫
Ωh

ρh(t , x)dx = 0,

which we rewrite as
m∑

i=1

fi (ρi (t ,0−)) =
m+n∑

j=m+1

fj (ρj (t ,0+)).
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Weak solutions, edge-wise entropy admissible

We call weak solution on the star-shaped network ~ρ = (ρ1, . . . , ρm+n)

ρh ∈ L∞(R+ × Ωh; [0,R]) ;
ρh is a Kruzhkov entropy solution in R+ × {Ωh \ ∂Ωh}.
Namely ∀k ∈ [0,R] and ∀ϕ ∈ C1

c (R+ × Ωh), ϕ ≥ 0∫
R+

∫
Ωh

|ρh − k |ϕt +sign(ρh − k) (fh(ρh)− fh(k))ϕx dx dt

+

∫
Ωh

|uh
0(x)− k |ϕ(0, x) dx ≥ 0 ;

conservation at the junction holds.

ý Weak solutions are not unique in general.
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The junction as a family of IBVPs

Fix ~u0 = (u1
0 , . . . ,u

m+n
0 )

We look for ~ρ = (ρ1, . . . , ρm+n) s.t. ∀h, ρh ∈ L∞(R+ × Ωh, [0,R]) solves
∂tρh + ∂x fh(ρh) = 0, on ]0,T [×Ωh,

ρh(t ,0) = vh(t), on ]0,T [,

ρh(0, x) = uh
0(x), on Ωh,

where ~v : R+ → [0,R]m+n is to be fixed at each t > 0

ý to ensure conservation,
ý depending on the state of the system,
ý encoding coupling conditions at x = 0.
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. . . Solves? Weak entropy solution for the IBVP

u is a weak entropy solution for the IBVP
∂tu + ∂x f (u) = 0, for (t , x) in R+ × R−
u(t ,0−) = ub(t),
u(0, x) = u0(x),

if
u is a Kruzhkov entropy solution in the interior of R+ × R−,
u satisfies the boundary condition in the sense of
Bardos-LeRoux-Nédélec

sign(u(t ,0−)− ub(t))
(
f (u(t ,0−))−f (k)

)
≥ 0,

∀k ∈ I(u(t ,0−),ub(t)),

which also write as

f (u(t ,0−)) = God(u(t ,0−),ub(t)).
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The Coclite-Garavello-Piccoli Riemann solver

Consider branch-wise constant data ~ρ = (ρ1, . . . , ρm+n)

To describe the Riemann Solver at the junction we define
ý for i = 1, . . . ,m

Demand function : ∆i (ρi ) = maxs Godfi (ρi , s) ;
ý for j = m + 1, . . . ,m + n

Supply function : Σj (ρj ) = maxs Godfj (s, ρj ) ;
and we use them to determine the passing flow at the junction from each of
the incoming roads

Γi : [0,R]m+n → [0, f max
i ], i = 1, . . . ,m.
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At a 1-2 divide

Fix a distribution factor β ∈ (0,1).

The passing flow at the junction is Γ1 : [0,R]3 → [0, f max
1 ] such that :

ý If β∆1(ρ1) ≤ Σ2(ρ2), and (1− β)∆1(ρ1) ≤ Σ3(ρ3) then Γ1(~ρ) = ∆1(ρ1),
ý otherwise, Γ1(~ρ) = min{β−1Σ2(ρ2), (1− β)−1Σ3(ρ3)} .

In both cases 
v1 =

(
f1|[ρ̄1,R]

)−1
(Γ1),

v2 =
(

f2|[0,ρ̄2 ]

)−1
(βΓ1),

v3 =
(

f3|[0,ρ̄3 ]

)−1
((1− β)Γ1).

Remark

The application ~ρ 7→ (Γ1,−βΓ1,−(1− β)Γ1) is not monotone.
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At a 2− 2 junction

We introduce a distribution matrix of the form

A =

(
β γ

1− β 1− γ

)
with β and γ in ]0,1[\{1/2}.
Then

(Γ1, Γ2) ∈ [0,∆1]× [0,∆2];
A · (Γ1, Γ2)T must be in [0,Σ3]× [0,Σ4] ;
Γ1 + Γ2 should be as large as possible, under the constraints above.

Remark

Counterexemples show that this solver lacks L1-Lipschitz continuity with
respect to the initial conditions.
See [Coclite-Garavello-Piccoli, 2005] and the book by Garavello and Piccoli Traffic Flow on Networks.
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Vanishing viscosity approximations

[Coclite-Garavello, 2010]

Fix ε > 0 and consider
∂tρ

ε
h + ∂x fh(ρεh) = ε∂2

xxρ
ε
h,∑m

i=1 (fi (ρεi (t ,0))−ε∂xρ
ε
i (t ,0)) =

∑m+n
j=m+1

(
fj (ρεj (t ,0))−ε∂xρ

ε
j (t ,0)

)
,

ρεh(t ,0) = ρεh′(t ,0),

ρεh(0, x) = u0
h,ε(x),

where the initial conditions ~u0,ε approximates ~ρ0

u0
h,ε ∈ W 2,1 ∩ C∞(Ωh; [0,R]),

u0
h,ε −→ ρ0,h, a.e. and in Lp(Ωh), 1 ≤ p <∞, as ε→ 0,∥∥∥u0

h,ε

∥∥∥
L1(Ωh)

≤ ‖ρ0,h‖L1(Ωh),
∥∥∥∂x u0

h,ε

∥∥∥
L1(Ωh)

≤ TV (ρ0,h), ε
∥∥∥∂2

xx u0
h,ε

∥∥∥
L1(Ωh)

≤ C0,

with C0 > 0 independent from ε, h.
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For any fixed ε > 0 there exists a unique ~ρε s.t.

ρεh ∈ C([0,∞); L2(Ωh)) ∩ L1
loc((0,∞); W 2,1(Ωh)), ∀h,

0 ≤ ρεh ≤ R,
m+n∑
h=1

‖ρεh(t , ·)‖L1(Ωh) ≤
m+n∑
h=1

‖ρ0,h‖L1(Ωh), ∀t ≥ 0,

+ additional a priori estimates.

Compensated compactness⇒ existence of a sequence {ε`}`∈N, ε` → 0
and a weak solution ~ρ of the inviscid Cauchy problem at the junction s.t.

ρ
ε`
h −→ ρh, a.e. and in Lp

loc(R+ × Ωh), 1 ≤ p <∞,

for every h ∈ {1, . . . ,m + n}.

In [Andreianov-D.-Coclite, 2017] we further characterize the limit solution and prove its
uniqueness. More details in the following. . .
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Analogously to [Diehl, 2009], [Andreianov-Mitrović, 2015] for m = n = 1

The condition ρεh(t , 0) = ρεh′(t , 0), ∀h, h′ ∈ {1, . . . ,m + n}, translates into

vh(t) = vh′(t),

for the family of hyperbolic IBVPs at the junction.

~ρ = (ρ1, . . . , ρm+n) is an admissible solution if there exists v in L∞(R+, [0,R]) s.t.

~ρ is a weak solution,

each component ρh is weak entropy solution for the IBVP
ρh,t + fh(ρh)x = 0, on ]0,T [×Ωh,

ρh(t , 0) = v(t), on ]0,T [,

ρh(0, x) = ρh
0(x), on Ωh.
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We call germ of vanishing viscosity the set

GVV =
{
~k ∈ [0,R]m+n, stationary edge-wise constant admissible solution

}

Lemma

If ρh is a Kruzhkov entropy solution in the interior of R+ × Ωh, ∀h ∈ {1, . . . ,m + n},
TFAE

~ρ is an admissible solution;

for a.e. t ∈ R+, the vector of traces ~γρ(t) = (ρ1(t , 0−), . . . , ρm+n(t , 0+)) is in GVV ;

∀~k ∈ GVV , ~ρ satisfies adapted entropy inequality on the network:
∀ξ ∈ C∞c (R+ × R), ξ ≥ 0,

m+n∑
h=1

(∫
R+

∫
Ωh

{|ρh − kh|ξt + sign(ρh − kh)(fh(ρh)− fh(kh))ξx} dx dt

)
≥ 0.
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Well-posedness for admissible solutions

Theorem

For any ~ρ0 there exists an admissible solution ~ρ.

If ~ρ and ~ρ∗ are admissible solutions corresponding to ~u0 and ~v0, then

m+n∑
h=1

‖ρh(t)− ρ∗h (t)‖L1(Ωh ;R) ≤
m+n∑
h=1

∥∥∥u0
h − v0

h

∥∥∥
L1(Ωh ;R)

.

Fundamental properties of GVV

completeness : we can associate an admissible solution to any Riemann
datum.

dissipativity : for any ~k1, ~k2 in GVV with ~k` = (k`
1 , . . . , k

`
m+n), ` = 1, 2,

m∑
i=1

sign(k1
i − k2

i )
(

fi (k1
i )− fi (k2

i )
)
−

m+n∑
j=m+1

sign(k1
j − k2

j )
(

fj (k1
j )− fj (k2

j )
)
≥ 0.

maximality : if ~k1 satisfies ⇑ for all ~k2 in GVV , then ~k1 ∈ GVV .
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Vanishing viscosity with different coupling conditions?
See [Guarguaglini-Natalini, 2015 & 2021] for the linear case

We consider coupling conditions inspired by the Kedem-Katchalsky conditions
for membrane permeability
∂tρ

ε
h + ∂x fh(ρεh) = ε∂2

xxρ
ε
h, t > 0, x ∈ Ωh,

ρεh(0, x) = ρεh,0(x), h = 1, . . . ,m + n,
fi (ρεi (t ,0))− ε∂xρ

ε
i (t ,0) =

∑
j cij (ρ

ε
i (t ,0)− ρεj (t ,0)), i = 1, . . . ,m,

fj (ρεj (t ,0))− ε∂xρ
ε
j (t ,0) =

∑
i cij (ρ

ε
i (t ,0)− ρεj (t ,0)), j = m + 1, . . . ,m + n,

where cij > 0. We do not impose continuity at x = 0.

We can prove [Coclite-D. 2020] :
Existence of parabolic approximations for any ε;
Convergence (up to a subsequence) to a weak solution.
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Characterization of the hyperbolic limit?
The 1-1 case

Assume f1(ρχ) = f2(ρχ) and f1(ρ̂) = f2(ρ̌) = c(ρ̂− ρ̌)
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∂tρ
ε
1 + ∂x f1(ρε1) = ε∂2

xxρ
ε
1, t > 0, x < 0,

∂tρ
ε
2 + ∂x f2(ρε2) = ε∂2

xxρ
ε
2, t > 0, x > 0,

f1(ρε1(t ,0))− ε∂xρ
ε
1(t ,0) = c(ρε1(t ,0)− ρε2(t ,0)), t > 0,

f2(ρε2(t ,0))− ε∂xρ
ε
2(t ,0) = c(ρε1(t ,0)− ρε2(t ,0)), t > 0,

ρε1(0, x) = ρ̂, x < 0,
ρε2(0, x) = ρ̌, x > 0.

As ε→ 0 the limit is ρ1(t , x) ≡ ρ̂, ρ2(t , x) ≡ ρ̌.
The couple (ρ̂, ρ̌) is a connection as introduced by
[Adimurthi-Mishra-Gowda, 2005].
Already obtained by adapted vanishing viscosity regularization{

∂tρ
ε
1 + ∂x f1(ρε1) = ε∂2

xxa1 (ρε1) , t > 0, x < 0,
∂tρ

ε
2 + ∂x f2(ρε2) = ε∂2

xxa2 (ρε2) , t > 0, x > 0,

where a1 and a2 : [0,1]→ [0,1] are strictly monotone increasing
bijections and a1(ρ̂) = a2(ρ̌).
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Can be find a complete, maximal, L1 dissipative germ for the limit problem?

GKK =
{

(uL,uR) s.t. u(t , x) = uL1R− + uR1R+ is a stationary admissible solution
}

A = (ρ̂, ρ̌) defined by f1(ρ̂) = f2(ρ̌) = c(ρ̂− ρ̌) must be in,
together with u(t , x) ≡ 0 and u(t , x) ≡ 1.

Of course, the germ contains all the couples (a,b) which
ü are traces of IBVPs with boundary conditions ~v = (ρ̂, ρ̌), ~v = (0,0) or

~v = (1,1) ;
ü satisfy the Rankine-Hugoniot condition.

H =


(a,b) : a ∈ [0, ǔL] ∪ {ρ̂},

b ∈ [ûR ,1] ∪ {ρ̌},
f1(a) = f2(b).

 ∪ {(0,0)} ∪ {(1,1)},

where ǔL and ûR satisfy f1(ǔL) = f1(ρ̂) and f2(ûR) = f2(ρ̌)
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Some Riemann problems do not have solutions if we impose that the traces at
x = 0 of the solution are in H.

We call G∗A the set of all couples (a,b) such that f1(a) = f2(b) and

sign(a− ρ̂) (f1(a)− f1(ρ̂))− sign(b − ρ̌) (f2(b)− f2(ρ̌)) ≥ 0,

This set need to be in the germ because we need maximality and
L1-dissipativity.

A case by case study show that G∗A is
complete and maximal.
Also, we can show that each couple in
G∗A correspond to the limit of a viscous
profile.
Therefore, we can use it to prove
well-posedness of limit solutions to the
hyperbolic problem.
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Thank you for your attention!
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