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We consider a junction consisting of m incoming and n outgoing edges.

@ Incomingedges: x € Q;=R_,i=1,...,m;
@ QOutgoingedges: x € Q; =R, j=m+1,....m+n;
@ The junction is located at x = 0.
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On each edge we consider the evolution problem

8tph+3xfh(ph):0, h:17...7m+n,

@ pp conserved quantity,
@ fy flux : possibly different, non degenerate nonlinear and bell-shaped
e fy:[0, Rl — R4, Lipschitz continuous,
e £,(0) =0 = fu(R),
e 3p € [0, R], such that f(p)(p — p) > 0, for a.e. p € [0, RY.
We postulate conservation at the junction

m+n

dtZ/phtX =0,

which we rewrite as

m m+n

ST Hpit,07) = D fi(p(t,07))
i=1

J=m+1
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Weak solutions, edae-wise entropy admissigle

We call weak solution on the star-shaped network g'= (p1, ..., pm+n)
@ pp € L®(Ry x Qp;[0,R]) ;
@ pp is a Kruzhkov entropy solution in Ry x {Qp\ 0Q4}.
Namely Yk € [0, R] and Vo € C}(Ry x Q4), ¢ >0
[ lon=Kigrsign(on — k) (fton) ~ (k) o e ot
Ry JQp
+ [ 160 - kg0 0k 2 0
Qp

@ conservation at the junction holds.

Weak solutions are not unique in general.
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The junction as a family of IBVPs

Fix do = (ud,...,uy"™"")

We look for 5= (p1,- .., pmtn) S.t. Vh, pp € L= (R4 x Qp, [0, R]) solves

Oipn + 8th(,0h) =0, on ]07 T[XQh,
ph(f7 O) = Vh(l‘)7 on ]O, T[7
ph(O,X) = Ug(x)7 on th

where v : R, — [0, R]™*" is to be fixed at each t > 0

to ensure conservation,
depending on the state of the system,
encoding coupling conditions at x = 0.
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... Solves? weak entropy solution for the [BVP

uis a weak entropy solution for the IBVP
Ot + Oxf(u) =0, for (f,x)inR. x R_

u(t,07) = up(t),
u(0, x) = Uo(x),

if
@ uis a Kruzhkov entropy solution in the interior of R, x R_,

@ u satisfies the boundary condition in the sense of
Bardos-LeRoux-Nédélec

sign(u(t,07) — up(t))(F(u(t,07))—f(k)) > 0,
vk € Z(u(t,07), up(t)),

which also write as
f(u(t,07)) = God(u(t,07), up(t)).
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The Coclite-Garavello-Piccoli Riemann solver

Consider branch-wise constant data p'= (p1, ..., pm+n)

To describe the Riemann Solver at the junction we define
fori=1,....m
Demand function : Aj(p;) = maxs God(pi, S) ;
forj=m+1,...,m+n
Supply function : X;(p;) = maxs Gody(s, p;) ;

and we use them to determine the passina £low at the junction from each of
the incoming roads

[0, R™" [0, ™,  i=1,....m.

PR
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At a I-2 divide
Fix a distrisution factor g € (0,1).
The passina £low at the junction is Ty : [0, R]® — [0, f™>] such that :

If 8A1(p1) < Ta(p2), and (1 — B)A1(p1) < Za(ps) then T1(p) = A1(p1),
otherwise, I'(7) = min{3~"%2(p2),(1 — B)~"Ta(ps)} .
In both cases

vy = (7‘1\[,.,11,;,])71 (1),
V2 = ("2\[0,;321)71 (BT1),
1
V3 = (f3‘[0,{;3]) ((1 - B)r1)

Remark
The application p'+— (I'1,—8 1, —(1 — §)I1) is not monotone.

C. Donadello (UFC) CLAWS on Networks 16 March 2023 8/20



At a 2 -2 junction

We introduce a distribution matrix of the form

_( B gl
A_(1—B 1—7)

with 8 and v in ]0, 1[\{1/2}.
Then

()] (F1,F2) € [0,A1] X [O,AQ],
@ A-(I4,I2)" mustbein [0, X3] x [0, %4] ;
@ [ + I'> should be as large as possible, under the constraints above.

R.emark

Counterexemples show that this solver lacks L'-Lipschitz continuity with
respect to the initial conditions.

See [Coclite-Garavello-Piccoli, 2005] and the book by Garavello and Piccoli Traffic Flow on Networks.
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Vanishing viscosity approximations
[Coclite-Garavello, 2010]

Fix e > 0 and consider

Oipf + OxTn(pf) = £0%ph,

S (o (1,0))—20xpf (£,0)) = STy (05 (£,0)) 2005 (£,0))
Ph(t.0) = p (£, 0),

pi(0,x) = up (%),

where the initial conditions o . approximates po
up. € W30 C®(Qn; [0, A),
Up. — po, a.e. andin LP(Q4),1<p< oo, ase — 0,

< Vipn), ¢ Co.

0 0 2 , 0
u < ’6 u O U
|- iy < Mol [[Octhne i VEEN

with Cy > 0 independent from ¢, h.
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For any fixed ¢ > 0 there exists a unique p¢ s.t.

ph € C([0,00); L*(2n)) N Lioe((0, 50); W' (Qn)),  Vh,
m+n m+n

0<ph<A, Z llPn(t, H/_1 @ = Z [l po, hHU Q) vt >0,
+ additional a priori estimates.

Compensated compactness = existence of a sequence {e¢}¢en, €0 — 0
and a weak solution 5 of the inviscid Cauchy problem at the junction s.t.

ot — pn, a.e. andin LY

(R x Qp), 1 < p< oo,

forevery he {1,...,m+ n}.

In [Andreianov-D.-Coclite, 2017] we further characterize the limit solution and prove its

uniqueness. More details in the following. . .
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Analogously to [Diehl, 2009], [Andreianov-Mitrovi¢, 2015] form=n=1
The condition p5(t,0) = pf (t,0), Vh, i € {1,..., m+ n}, translates into

Vh(t) = Vh/(t),

for the family of hyperbolic IBVPs at the junction.

o= (p1,..., pmern) is @an admissigle solution if there exists v in L>°(R4, [0, A]) s.t.
@ pis a wesk solution,
@ each component py, is weak entropy solution for the IBVP

pht + fa(pn)x =0, on 10, T[xQn,
pa(t,0) = v(1), on o0, T,
ph(07 X) = pg(X)7 on Qp.
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We call aerm of vanishing viscosity the set

Gy = {E € [0, R™", stationary edge-wise constant admissigle solutior\}

Lenmma

If pn is a Kruzhkov entropy solution in the interior of R x Q4, Vh € {1,...,m+ n},
TFAE

@ Jis an admissigle solution;

@ for a.e. t € R;, the vector of traces vp(t) = (p1(t,07), ..., pm+n(t,07)) isin Gyy ;

@ Vk € Gy, j satisfies adapted entropy inequality on the network:
Ve € C”(Ry xR), £ >0,

m+n

{lpn — knl&t + sign(pn — Kn)(fa( )—f(k)){x}dxdt>>0.
;(/Hh/nh Ph h Ph h)(Th(pn h(Knh
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Well-posedness for admissible solutions

Theorem
@ For any gy there exists an admissigle solution f.
@ If pand §* are admissigle solutions corresponding to dp and i, then

m+n m+n

* 0 0
D llon(®) = ph (Ol sy < D HU" o
o h=1

LY (QpR)

Fundamental properties of Gyy

@ completeness : we can associate an admissigle solution to any Riemann
datum.

@ dissipativity : for any ki, kz in Gyy with ky = (k{, ... khin), £ =1, 2,
m-+n

S sign(k! — KE) (K1)~ 1068) — 3 sian(k’ — K7) (16") ~ (kD)) = 0.

i=1 j=m+1
@ maximality : if k; satisfies 1) for all k, in Gy, then ky € Guy.
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Vanishing viscosity with different coupling conditions?

See [Guarguaglini-Natalini, 2015 & 2021] for the linear case

We consider coupling conditions inspired by the Kedem-Katchalsky conditions
for membrane permeability

Oips, + Oxfa(pf) = €02 <O t>0, x € Qp,
pp(0, X) = pf, o(X), h=1,...,m+n,
fi(p; (t,0)) — e0xpf (t,0) = 32, cj(pf(1,0) — pj(£,0)),  i=1,....m,

fi(p; (t,0)) — e0xpf (1,0) = 3=, cji(pf(1,0) — p(£,0)), j=m+1,....m+n,

where ¢; > 0. We do not impose continuity at x = 0.

We can prove [Coclite-D. 2020] :
@ Existence of parabolic approximations for any ¢;
@ Convergence (up to a subsequence) to a weak solution.
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Characterization of the hyperbolic limit?

The 1-1 case
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op5 + Oxfi(pg) = Eafx/ﬁ? t>0,x<0,
A5 + Oxba(ps) = €055, t>0,x>0,
fi(p3(t,0)) — e0xpi(t,0) = c(p3(t,0) — p5(t,0)), t>0,
f2(p§(t7 0)) - Eaxpg(h 0) = C(p?(t,O) - pg(t7 0)), t>0,
/ﬁ(ovx):ﬁv x <0,
p5(0,x) = p, x> 0.

Ase — Othelimitis  pi(t,x)=p,  pa(t,x) =p.
@ The couple (p, p) is a connection as introduced by
[Adimurthi-Mishra-Gowda, 2005].

@ Already obtained by adapted vanishing viscosity regularization

op§ + Oxfi(p5) = e02,a1 (p5) t>0,x<0,
Orps + Oxha(p5) = £02,82 (p5) t>0, x>0,

where a; and a, : [0, 1] — [0, 1] are strictly monotone increasing
bijections and ay(p) = ax(p).
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Can be find a complete, maximal, L' dissipative germ for the limit problem?

Gkk = {(uL, ug) s.t. u(t,x) = u lr_ + URlg, is a stationary admissible solution }

A = (p, p) defined by fi(p) = (p) = ¢(p — p) must be in,
together with u(t, x) = 0 and u(t, x) = 1.
Of course, the germ contains all the couples (a, b) which

are traces of IBVPs with boundary conditions v = (p, ), v = (0, 0) or
v=(1,1);

satisfy the Rankine-Hugoniot condition.

(a,b): a€ [0, ] U{p},
H= b€ [, 1]U{p}, p U{(0,0)} U{(1, 1)},
fi(a) = (D).
where U; and O satisfy f; (U,) = fi(p) and f(Ug) = &(p)
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Some Riemann problems do not have solutions if we impose that the traces at
x = 0 of the solution are in #.

We call G} the set of all couples (a, b) such that f;(a) = £(b) and
sign(a — p) (fi(a) — £ (p)) — sign(b — p) (f2(b) — 2(p)) = 0,

This set need to be in the germ because we need maximality and
L'-dissipativity.

A case by case study show that G is Uy
complete and maximal.

Also, we can show that each couple in
Gy correspond to the limit of a viscous
profile.

Therefore, we can use it to prove
well-posedness of limit solutions to the “p
hyperbolic problem.
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Thank you f£or your attention!
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