Conservation laws on a star-shaped network

Carlotta Donadello

UNIVERSITē *
FRANCHE-COMTĕ

Lancement de l'ANR COSS, 16 March 2023

We consider a junction consisting of m incoming and n outgoing edges.

- Incoming edges: $x \in \Omega_{i}=\mathbb{R}_{-}, i=1, \ldots, m$;
- Outgoing edges: $x \in \Omega_{j}=\mathbb{R}_{+}, j=m+1, \ldots, m+n$;
- The junction is located at $x=0$.

On each edge we consider the evolution problem

$$
\partial_{t} \rho_{h}+\partial_{x} f_{h}\left(\rho_{h}\right)=0, \quad h=1, \ldots, m+n,
$$

- ρ_{h} conserved quantity,
- f_{h} flux : possibly different, non degenerate nonlinear and bell-shaped
- $f_{h}:[0, R] \rightarrow \mathbb{R}_{+}$, Lipschitz continuous,
- $f_{h}(0)=0=f_{h}(R)$,
- $\exists \bar{\rho} \in[0, R]$, such that $f_{h}^{\prime}(\rho)(\bar{\rho}-\rho)>0$, for a.e. $\rho \in[0, R]$.

We postulate conservation at the junction

$$
\frac{d}{d t} \sum_{h=1}^{m+n} \int_{\Omega_{h}} \rho_{h}(t, x) d x=0
$$

which we rewrite as

$$
\sum_{i=1}^{m} f_{i}\left(\rho_{i}\left(t, 0^{-}\right)\right)=\sum_{j=m+1}^{m+n} f_{j}\left(\rho_{j}\left(t, 0^{+}\right)\right)
$$

Weak solutions, edge-wise entropy admissible

We call weak solution on the star-shaped network $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m+n}\right)$

- $\rho_{h} \in L^{\infty}\left(\mathbb{R}_{+} \times \Omega_{h} ;[0, R]\right)$;
- ρ_{h} is a Kruzhkov entropy solution in $\mathbb{R}_{+} \times\left\{\Omega_{h} \backslash \partial \Omega_{h}\right\}$. Namely $\forall k \in[0, R]$ and $\forall \varphi \in \mathcal{C}_{C}^{1}\left(\mathbb{R}_{+} \times \Omega_{h}\right), \varphi \geq 0$

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}} \int_{\Omega_{h}}\left|\rho_{h}-k\right| \varphi_{t}+ \operatorname{sign}\left(\rho_{h}-k\right)\left(f_{h}\left(\rho_{h}\right)-f_{h}(k)\right) \varphi_{x} d x d t \\
&+\int_{\Omega_{h}}\left|u_{0}^{h}(x)-k\right| \varphi(0, x) d x \geq 0
\end{aligned}
$$

- conservation at the junction holds.

Weak solutions are not unique in general.

The junction as a family of IBVPs

Fix $\vec{u}_{0}=\left(u_{0}^{1}, \ldots, u_{0}^{m+n}\right)$
We look for $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m+n}\right)$ s.t. $\forall h, \rho_{h} \in L^{\infty}\left(\mathbb{R}_{+} \times \Omega_{h},[0, R]\right)$ solves

$$
\begin{cases}\partial_{t} \rho_{h}+\partial_{x} f_{h}\left(\rho_{h}\right)=0, & \text { on }] 0, T\left[\times \Omega_{h},\right. \\ \rho_{h}(t, 0)=v_{h}(t), & \text { on }] 0, T[, \\ \rho_{h}(0, x)=u_{0}^{h}(x), & \text { on } \Omega_{h},\end{cases}
$$

where $\vec{v}: \mathbb{R}_{+} \rightarrow[0, R]^{m+n}$ is to be fixed at each $t>0$

- to ensure conservation,
- depending on the state of the system,

Et encoding coupling conditions at $x=0$.

. . . Solves? Weak entropy solution for the IBVP

 u is a weak entropy solution for the $\operatorname{BVP}$$$
\left\{\begin{array}{l}
\partial_{t} u+\partial_{x} f(u)=0, \quad \text { for }(t, x) \text { in } \mathbb{R}_{+} \times \mathbb{R}_{-} \\
u\left(t, 0^{-}\right)=u_{b}(t), \\
u(0, x)=u_{0}(x),
\end{array}\right.
$$

if

- u is a Kruzhkov entropy solution in the interior of $\mathbb{R}_{+} \times \mathbb{R}_{-}$,
- u satisfies the boundary condition in the sense of Bardos-LeRoux-Nédélec

$$
\begin{aligned}
\operatorname{sign}\left(u\left(t, 0^{-}\right)-u_{b}(t)\right)\left(f\left(u\left(t, 0^{-}\right)\right)-f(k)\right) & \geq 0, \\
\forall k & \in \mathcal{I}\left(u\left(t, 0^{-}\right), u_{b}(t)\right),
\end{aligned}
$$

which also write as

$$
f\left(u\left(t, 0^{-}\right)\right)=\operatorname{God}\left(u\left(t, 0^{-}\right), u_{b}(t)\right)
$$

The Coclite-Garavello-Piccoli Riemann solver

Consider branch-wise constant data $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m+n}\right)$
To describe the Riemann Solver at the junction we define
? for $i=1, \ldots, m$
Demand function: $\Delta_{i}\left(\rho_{i}\right)=\max _{s} \operatorname{God}_{f_{i}}\left(\rho_{i}, s\right)$;
? for $j=m+1, \ldots, m+n$
Supply function: $\Sigma_{j}\left(\rho_{j}\right)=\max _{s} \operatorname{God}_{f_{j}}\left(s, \rho_{j}\right)$;
and we use them to determine the passing flow at the junction from each of the incoming roads

$$
\Gamma_{i}:[0, R]^{m+n} \rightarrow\left[0, f_{i}^{\max }\right], \quad i=1, \ldots, m .
$$

At a $1-2$ divide

Fix a distribution factor $\beta \in(0,1)$.
The passing flow at the junction is $\Gamma_{1}:[0, R]^{3} \rightarrow\left[0, f_{1}^{\max }\right]$ such that :
If $\beta \Delta_{1}\left(\rho_{1}\right) \leq \Sigma_{2}\left(\rho_{2}\right)$, and $(1-\beta) \Delta_{1}\left(\rho_{1}\right) \leq \Sigma_{3}\left(\rho_{3}\right)$ then $\Gamma_{1}(\vec{\rho})=\Delta_{1}\left(\rho_{1}\right)$,

- otherwise, $\Gamma_{1}(\vec{\rho})=\min \left\{\beta^{-1} \Sigma_{2}\left(\rho_{2}\right),(1-\beta)^{-1} \Sigma_{3}\left(\rho_{3}\right)\right\}$.

In both cases

$$
\left\{\begin{array}{l}
v_{1}=\left(f_{1 \mid\left[\bar{\rho}_{1}, \beta\right]}\right)^{-1}\left(\Gamma_{1}\right), \\
v_{2}=\left(f_{2 \mid\left[0, \bar{\rho}_{2}\right]}\right)^{-1}\left(\beta \Gamma_{1}\right), \\
v_{3}=\left(f_{3 \mid\left[0, \bar{\rho}_{3}\right]}\right)^{-1}\left((1-\beta) \Gamma_{1}\right) .
\end{array}\right.
$$

Remark

The application $\vec{\rho} \mapsto\left(\Gamma_{1},-\beta \Gamma_{1},-(1-\beta) \Gamma_{1}\right)$ is not monotone.

At a $2-2$ junction

We introduce a distribution matrix of the form

$$
\boldsymbol{A}=\left(\begin{array}{cc}
\beta & \gamma \\
1-\beta & 1-\gamma
\end{array}\right)
$$

with β and γ in $] 0,1[\backslash\{1 / 2\}$.
Then

- $\left(\Gamma_{1}, \Gamma_{2}\right) \in\left[0, \Delta_{1}\right] \times\left[0, \Delta_{2}\right]$;
- $A \cdot\left(\Gamma_{1}, \Gamma_{2}\right)^{T}$ must be in $\left[0, \Sigma_{3}\right] \times\left[0, \Sigma_{4}\right]$;
- $\Gamma_{1}+\Gamma_{2}$ should be as large as possible, under the constraints above.

Remark

Counterexemples show that this solver lacks L^{1}-Lipschitz continuity with respect to the initial conditions.

See [Coclite-Garavello-Piccoli, 2005] and the book by Garavello and Piccoli Traffic Flow on Networks.

Vanishing viscosity approximations

```
[Coclite-Garavello, 2010]
```

Fix $\varepsilon>0$ and consider

$$
\left\{\begin{array}{l}
\partial_{t} \rho_{h}^{\varepsilon}+\partial_{x} f_{h}\left(\rho_{h}^{\varepsilon}\right)=\varepsilon \partial_{x x}^{2} \rho_{h}^{\varepsilon}, \\
\sum_{i=1}^{m}\left(f_{i}\left(\rho_{i}^{\varepsilon}(t, 0)\right)-\varepsilon \partial_{x} \rho_{i}^{\varepsilon}(t, 0)\right)=\sum_{j=m+1}^{m+n}\left(f_{j}\left(\rho_{j}^{\varepsilon}(t, 0)\right)-\varepsilon \partial_{x} \rho_{j}^{\varepsilon}(t, 0)\right), \\
\rho_{h}^{\varepsilon}(t, 0)=\rho_{h^{\prime}}^{\varepsilon}(t, 0), \\
\rho_{h}^{\varepsilon}(0, x)=u_{h, \varepsilon}^{0}(x),
\end{array}\right.
$$

where the initial conditions $\vec{u}_{0, \varepsilon}$ approximates $\vec{\rho}_{0}$

$$
u_{h, \varepsilon}^{0} \in W^{2,1} \cap C^{\infty}\left(\Omega_{h} ;[0, R]\right),
$$

$$
u_{h, \varepsilon}^{0} \longrightarrow \rho_{0, h}, \text { a.e. and in } L^{p}\left(\Omega_{h}\right), 1 \leq p<\infty, \text { as } \varepsilon \rightarrow 0,
$$

$$
\left\|u_{h, \varepsilon}^{0}\right\|_{L^{1}\left(\Omega_{h}\right)} \leq\left\|\rho_{0, h}\right\|_{L^{1}\left(\Omega_{h}\right)}, \quad\left\|\partial_{x} u_{h, \varepsilon}^{0}\right\|_{L^{1}\left(\Omega_{h}\right)} \leq T V\left(\rho_{0, h}\right), \quad \varepsilon\left\|\partial_{x x}^{2} u_{h, \varepsilon}^{0}\right\|_{L^{1}\left(\Omega_{h}\right)} \leq C_{0},
$$

with $C_{0}>0$ independent from ε, h.

For any fixed $\varepsilon>0$ there exists a unique $\overrightarrow{\rho \varepsilon}$ s.t.

$$
\begin{aligned}
& \rho_{h}^{\varepsilon} \in C\left([0, \infty) ; L^{2}\left(\Omega_{h}\right)\right) \cap L_{l o c}^{1}\left((0, \infty) ; W^{2,1}\left(\Omega_{h}\right)\right), \quad \forall h, \\
& 0 \leq \rho_{h}^{\varepsilon} \leq R, \quad \sum_{h=1}^{m+n}\left\|\rho_{h}^{\varepsilon}(t, \cdot)\right\|_{L^{1}\left(\Omega_{h}\right)} \leq \sum_{h=1}^{m+n}\left\|\rho_{0, h}\right\|_{L^{1}\left(\Omega_{h}\right)}, \quad \forall t \geq 0
\end{aligned}
$$

+ additional a priori estimates.
Compensated compactness \Rightarrow existence of a sequence $\left\{\varepsilon_{\ell}\right\}_{\ell \in \mathbb{N}}, \varepsilon_{\ell} \rightarrow 0$ and a weak solution $\vec{\rho}$ of the inviscid Cauchy problem at the junction s.t.

$$
\rho_{h}^{\varepsilon_{\ell}} \longrightarrow \rho_{h}, \text { a.e. and in } L_{l o c}^{p}\left(\mathbb{R}_{+} \times \Omega_{h}\right), 1 \leq p<\infty
$$

for every $h \in\{1, \ldots, m+n\}$.

In [Andreianov-D.-Coclite, 2017] we further characterize the limit solution and prove its uniqueness. More details in the following. . .

Analogously to [Diehl, 2009], [Andreianov-Mitrović, 2015] for $m=n=1$

The condition $\rho_{h}^{\varepsilon}(t, 0)=\rho_{h^{\prime}}^{\varepsilon}(t, 0), \forall h, h^{\prime} \in\{1, \ldots, m+n\}$, translates into

$$
v_{h}(t)=v_{h^{\prime}}(t)
$$

for the family of hyperbolic IBVPs at the junction.
$\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m+n}\right)$ is an admissible solution if there exists v in $L^{\infty}\left(\mathbb{R}_{+},[0, R]\right)$ s.t.

- $\vec{\rho}$ is a weak solution,
- each component ρ_{h} is weak entropy solution for the IBVP

$$
\begin{cases}\rho_{h, t}+f_{h}\left(\rho_{h}\right)_{x}=0, & \text { on }] 0, T\left[\times \Omega_{h},\right. \\ \rho_{h}(t, 0)=v(t), & \text { on }] 0, T[, \\ \rho_{h}(0, x)=\rho_{0}^{h}(x), & \text { on } \Omega_{h} .\end{cases}
$$

We call germ of vanishing viscosity the set

$$
\mathcal{G}_{V V}=\left\{\vec{k} \in[0, R]^{m+n}, \text { stationary edge-wise constant admissible solution }\right\}
$$

Lemma

If ρ_{h} is a Kruzhkov entropy solution in the interior of $\mathbb{R}_{+} \times \Omega_{h}, \forall h \in\{1, \ldots, m+n\}$, TFAE

- $\vec{\rho}$ is an admissible solution;
- for a.e. $t \in \mathbb{R}_{+}$, the vector of traces $\overrightarrow{\gamma_{\rho}(t)}=\left(\rho_{1}\left(t, 0^{-}\right), \ldots, \rho_{m+n}\left(t, 0^{+}\right)\right)$is in $\mathcal{G}_{v v}$;
- $\forall \vec{k} \in \mathcal{G}_{V V}, \vec{\rho}$ satisfies adapted entropy inequality on the network: $\forall \xi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}\right), \xi \geq 0$,

$$
\sum_{h=1}^{m+n}\left(\int_{\mathbb{R}_{+}} \int_{\Omega_{h}}\left\{\left|\rho_{h}-k_{h}\right| \xi_{t}+\operatorname{sign}\left(\rho_{h}-k_{h}\right)\left(f_{h}\left(\rho_{h}\right)-f_{h}\left(k_{h}\right)\right) \xi_{x}\right\} d x d t\right) \geq 0 .
$$

Well-posedness for admissible solutions

Theorem

- For any $\vec{\rho}_{0}$ there exists an admissible solution $\vec{\rho}$.
- If $\vec{\rho}$ and $\vec{\rho}^{*}$ are admissible solutions corresponding to \vec{u}_{0} and \vec{v}_{0}, then

$$
\sum_{h=1}^{m+n}\left\|\rho_{h}(t)-\rho_{h}^{*}(t)\right\|_{L^{1}\left(\Omega_{h} ; \mathbb{R}\right)} \leq \sum_{h=1}^{m+n}\left\|u_{h}^{0}-v_{h}^{0}\right\|_{L^{1}\left(\Omega_{h} ; \mathbb{R}\right)}
$$

Fundamental properties of $\mathcal{G}_{V V}$

- completeness : we can associate an admissible solution to any Riemann datum.
- dissipativity : for any \vec{k}_{1}, \vec{k}_{2} in $\mathcal{G}_{v v}$ with $\vec{k}_{\ell}=\left(k_{1}^{\ell}, \ldots, k_{m+n}^{\ell}\right), \ell=1,2$,

$$
\sum_{i=1}^{m} \operatorname{sign}\left(k_{i}^{1}-k_{i}^{2}\right)\left(f_{i}\left(k_{i}^{1}\right)-f_{i}\left(k_{i}^{2}\right)\right)-\sum_{j=m+1}^{m+n} \operatorname{sign}\left(k_{j}^{1}-k_{j}^{2}\right)\left(f_{j}\left(k_{j}^{1}\right)-f_{j}\left(k_{j}^{2}\right)\right) \geq 0
$$

- maximality: if \vec{k}_{1} satisfies \Uparrow for all \vec{k}_{2} in $\mathcal{G}_{V V}$, then $\vec{k}_{1} \in \mathcal{G}_{V V}$.

Vanishing viscosity with different coupling conditions?

See [Guarguaglini-Natalini, 2015 \& 2021] for the linear case

We consider coupling conditions inspired by the Kedem-Katchalsky conditions for membrane permeability

$$
\begin{cases}\partial_{t} \rho_{h}^{\varepsilon}+\partial_{x} f_{h}\left(\rho_{h}^{\varepsilon}\right)=\varepsilon \partial_{x x}^{2} \rho_{h}^{\varepsilon}, & t>0, x \in \Omega_{h}, \\ \rho_{h}^{\varepsilon}(0, x)=\rho_{h, 0}^{\varepsilon}(x), & h=1, \ldots, m+n, \\ f_{i}\left(\rho_{i}^{\varepsilon}(t, 0)\right)-\varepsilon \partial_{x} \rho_{i}^{\varepsilon}(t, 0)=\sum_{j} c_{i j}\left(\rho_{i}^{\varepsilon}(t, 0)-\rho_{j}^{\varepsilon}(t, 0)\right), & i=1, \ldots, m, \\ f_{j}\left(\rho_{j}^{\varepsilon}(t, 0)\right)-\varepsilon \partial_{x} \rho_{j}^{\varepsilon}(t, 0)=\sum_{i} c_{i j}\left(\rho_{i}^{\varepsilon}(t, 0)-\rho_{j}^{\varepsilon}(t, 0)\right), & j=m+1, \ldots, m+n,\end{cases}
$$

where $\mathfrak{c}_{i j}>0$. We do not impose continuity at $x=0$.
We can prove [Coclite-D. 2020]:

- Existence of parabolic approximations for any ε;
- Convergence (up to a subsequence) to a weak solution.

Characterization of the hyperbolic limit?

The 1-1 case

Assume $f_{1}\left(\rho_{\chi}\right)=f_{2}\left(\rho_{\chi}\right)$ and $f_{1}(\hat{\rho})=f_{2}(\check{\rho})=\mathfrak{c}(\hat{\rho}-\check{\rho})$

$$
\begin{cases}\partial_{t} \rho_{1}^{\varepsilon}+\partial_{x} f_{1}\left(\rho_{1}^{\varepsilon}\right)=\varepsilon \partial_{x x}^{2} \rho_{1}^{\varepsilon}, & t>0, x<0, \\ \partial_{t} \rho_{2}^{\varepsilon}+\partial_{x} f_{2}\left(\rho_{2}^{\varepsilon}\right)=\varepsilon \partial_{x x}^{2} \rho_{2}^{\varepsilon}, & t>0, x>0, \\ f_{1}\left(\rho_{1}^{\varepsilon}(t, 0)\right)-\varepsilon \partial_{x} \rho_{1}^{\varepsilon}(t, 0)=\mathfrak{c}\left(\rho_{1}^{\varepsilon}(t, 0)-\rho_{2}^{\varepsilon}(t, 0)\right), & t>0, \\ f_{2}\left(\rho_{2}^{\varepsilon}(t, 0)\right)-\varepsilon \partial_{x} \rho_{2}^{\varepsilon}(t, 0)=\mathfrak{c}\left(\rho_{1}^{\varepsilon}(t, 0)-\rho_{2}^{\varepsilon}(t, 0)\right), & t>0, \\ \rho_{1}^{\varepsilon}(0, x)=\hat{\rho}, & x<0, \\ \rho_{2}^{\varepsilon}(0, x)=\check{\rho}, & x>0 .\end{cases}
$$

As $\varepsilon \rightarrow 0$ the limit is $\quad \rho_{1}(t, x) \equiv \hat{\rho}, \quad \rho_{2}(t, x) \equiv \check{\rho}$.

- The couple $(\hat{\rho}, \check{\rho})$ is a connection as introduced by [Adimurthi-Mishra-Gowda, 2005].
- Already obtained by adapted vanishing viscosity regularization
where a_{1} and $a_{2}:[0,1] \rightarrow[0,1]$ are strictly monotone increasing bijections and $a_{1}(\hat{\rho})=a_{2}(\breve{\rho})$.

Can be find a complete, maximal, L^{1} dissipative germ for the limit problem?
$\mathcal{G}_{K K}=\left\{\left(u_{L}, u_{R}\right)\right.$ s.t. $u(t, x)=u_{L} \mathbb{1}_{\mathbb{R}_{-}}+u_{\mathbb{R}} \mathbb{1}_{\mathbb{R}_{+}}$is a stationary admissible solution $\}$
$A=(\hat{\rho}, \check{\rho})$ defined by $f_{1}(\hat{\rho})=f_{2}(\check{\rho})=\mathfrak{c}(\hat{\rho}-\check{\rho})$ must be in, together with $u(t, x) \equiv 0$ and $u(t, x) \equiv 1$.

Of course, the germ contains all the couples (a, b) which
\Rightarrow are traces of IBVPs with boundary conditions $\vec{v}=(\hat{\rho}, \check{\rho}), \vec{v}=(0,0)$ or $\vec{v}=(1,1)$;
\Rightarrow satisfy the Rankine-Hugoniot condition.

$$
\mathcal{H}=\left\{\begin{array}{cl}
(a, b): & a \in\left[0, \check{u}_{L}\right] \cup\{\hat{\rho}\}, \\
& b \in\left[\hat{u}_{R}, 1\right] \cup\{\check{\rho}\}, \\
& f_{1}(a)=f_{2}(b) .
\end{array}\right\} \cup\{(0,0)\} \cup\{(1,1)\},
$$

where \check{u}_{L} and \hat{u}_{R} satisfy $f_{1}\left(\check{u}_{L}\right)=f_{1}(\hat{\rho})$ and $f_{2}\left(\hat{u}_{R}\right)=f_{2}(\check{\rho})$

Some Riemann problems do not have solutions if we impose that the traces at $x=0$ of the solution are in \mathcal{H}.

We call \mathcal{G}_{A}^{*} the set of all couples (a, b) such that $f_{1}(a)=f_{2}(b)$ and

$$
\operatorname{sign}(a-\hat{\rho})\left(f_{1}(a)-f_{1}(\hat{\rho})\right)-\operatorname{sign}(b-\check{\rho})\left(f_{2}(b)-f_{2}(\check{\rho})\right) \geq 0,
$$

This set need to be in the germ because we need maximality and L^{1}-dissipativity.

A case by case study show that \mathcal{G}_{A}^{*} is complete and maximal. Also, we can show that each couple in \mathcal{G}_{A}^{*} correspond to the limit of a viscous profile.
Therefore, we can use it to prove well-posedness of limit solutions to the hyperbolic problem.

Thank you for your attention!

