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Conservation laws on networks1

Networks

Finite collection of directed arcs I` = ]a`, b`[ connected by nodes

I1

I2

I3

I4

I5 I6

I7

I8 I9

1[Holden-Risebro 1995; Garavello-Piccoli 2006]
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LWR model2

Non-linear transport equation: PDE for mass conservation

∂tρ+ ∂xf(ρ) = 0 x ∈ R, t > 0

ρ = ρ(t, x) ∈ [0, ρmax] mean traffic density
f(ρ) = ρv(ρ) flux function

Empirical flux-density relation: fundamental diagram

ρρcr ρmax

fmax

f(ρ)

0

Greenshields ’35

ρρcr ρmax

fmax

f(ρ)

vf
fmax

ρmax−ρcr

Newell-Daganzo

2[Lighthill-Whitham 1955; Richards 1956]
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Extension to networks

m incoming arcs
n outgoing arcs
junction

LWR on networks:
[Holden-Risebro, 1995; Coclite-Garavello-Piccoli, 2005; Garavello-Piccoli, 2006]

LWR on each road
Optimization problem at the junction

Modeling of junctions with a buffer:
[Herty-Lebacque-Moutari, 2009; Garavello-Goatin, 2012; Garavello, 2014;

Bressan-Nguyen, 2015; LaurentBrouty&al, 2019]

Junction described by one or more buffers
Suitable for optimization and Nash equilibrium problems
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Riemann problem at point junctions

{
∂tρ` + ∂xf`(ρ`) = 0
ρ`(0, x) = ρ`,0

` = 1, . . . , n+m

Riemann solver: RSJ : (ρ1,0, . . . , ρn+m,0) 7−→ (ρ̄1, . . . , ρ̄n+m) s.t.
conservation of cars:

∑n
i=1 fi(ρ̄i) =

∑n+m
j=n+1 fj(ρ̄j)

waves with negative speed in incoming roads
waves with positive speed in outgoing roads

Consistency condition:

RSJ
(
RSJ(ρ1,0, . . . , ρn+m,0)

)
= RSJ(ρ1,0, . . . , ρn+m,0) (CC)

Set γ̄` = f`(ρ̄`)
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Dynamics at junctions

(A) prescribe a fixed distribution of traffic in outgoing roads

A = {aji} ∈ Rm×n : 0 < aji < 1,

n+m∑
j=n+1

aji = 1

outgoing fluxes = A· incoming fluxes
=⇒ conservation through the junction

(B) maximize the flux through the junction
=⇒ entropy condition

(A)+(B) equivalent to a LP optimization problem which gives a unique
solution to RPs (under suitable hypotheses on A)

More incoming than outgoing roads =⇒ priority parameters
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Demand & Supply 3

Incoming roads i = 1, . . . , n:

γmax
i (ρi,0) =

{
fi(ρi,0) if 0 ≤ ρi,0 < ρcr

fmax
i if ρcr ≤ ρi,0 ≤ 1

ρ

, f(ρ)γmax
i

fmax(ρ)

Outgoing roads j = n+ 1, . . . , n+m:

γmax
j (ρj,0) =

{
fmax
j if 0 ≤ ρj,0 ≤ ρcr

fj(ρj,0) if ρcr < ρj,0 ≤ 1

ρ

, f(ρ)γmax
j

fmax(ρ)

Admissible fluxes at junction: Ω` = [0, γmax
` ]

3[Lebacque]
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Priority Riemann Solver4

(A) distribution matrix of traffic from incoming to outgoing roads

A = {aji} ∈ Rm×n : 0 ≤ aji ≤ 1,

n+m∑
j=n+1

aji = 1

(B) priority vector

P = (p1, . . . , pn) ∈ Rn : pi > 0,

n∑
i=1

pi = 1

(C) feasible set

Ω =

{
(γ1, · · · , γn) ∈

n∏
i=1

Ωi : A · (γ1, · · · , γn)T ∈
n+m∏
j=n+1

Ωj

}

4[DelleMonache-Goatin-Piccoli, CMS 2018]
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Priority Riemann Solver

Algorithm 1 Recursive definition of PRS
Set J = ∅ and Jc = {1, . . . , n} \ J .
while |J | < n do
∀i ∈ Jc → hi = max{h : h pi ≤ γmaxi } =

γmaxi
pi

,

∀j ∈ {n+ 1 . . . , n+m} → hj = sup{h :
∑
i∈J ajiQi + h(

∑
i∈Jc ajipi) ≤

γmaxj }.
Set ~ = minij{hi, hj}.
if ∃ j s.t. hj = ~ then
Set Q = ~P and J = {1, . . . , n}.

else
Set I = {i ∈ Jc : hi = ~} and Qi = ~ pi for i ∈ I.
Set J = J ∪ I.

end if
end while
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PRS in practice

2× 2 junction (n = 2, m = 2):

γ2

γ1

γmax
1

γmax
2

P

γmax
3 = a3,1γ1 + a3,2γ2

γmax
4 = a4,1γ1 + a4,2γ2

1 Define the spaces of the
incoming fluxes

2 Consider the demands

3 Trace the supply lines

4 The feasible set is given
by Ω

5 Trace the priority line

Different situations can occur
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PRS: optimal point

P intersects the supply lines in ∂Ω

γ2

γ1

γmax
1

γmax
2

γmax
3

γmax
4

Q

P
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PRS: optimal point

P intersects the supply lines outside Ω

γ2

γ1

γmax
1

γmax
2

γmax
3

γmax
4

Q
P
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PRS

Definition (PRS)

Q = (γ̄1, . . . , γ̄n) incoming fluxes defined by Algorithm 1
A ·QT = (γ̄n+1, . . . , γ̄n+m)T outgoing fluxes
Set

ρ̄i =

{
ρi,0 if f(ρi,0) = γ̄i

ρ ≥ ρcr s.t. f(ρ) = γ̄i
i ∈ {1, . . . , n}

ρ̄i =

{
ρj,0 if f(ρj,0) = γ̄i

ρ ≤ ρcr s.t. f(ρ) = γ̄j
j ∈ {n+ 1, . . . , n+m}

Then, PRS : [0, ρmax]n+m → [0, ρmax]n+m is given by

PRS(ρ1,0, . . . , ρn+m,0) = (ρ̄1, . . . , ρ̄n, ρ̄n+1, . . . , ρ̄n+m) .

Remark: PRS may be obtained as limit of solvers defined by Dynamic
Traffic Assignment based on junctions with queues
[Bressan-Nordli, NHM, 2017]
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Cauchy problem: existence results

Theorem (DelleMonache-Goatin-Piccoli, CMS 2018)

If a Riemann solver satisfies (P1)-(P3), then every Cauchy problem with
BV initial data admits a weak solution.

Proof: Wave-Front Tracking, bound on TV(f) and “big shocks”.

Proposition (DelleMonache-Goatin-Piccoli, CMS 2018)

The Priority Riemann Solver PRS satisfies (P1)-(P3) for junctions with
n ≤ 2, m ≤ 2 and 0 < aji < 1 for all i, j.

16 / 32
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PRS: summary

General Riemann Solver at junctions:

no restrictions on A

no restrictions on the number of roads

priorities come before flux maximization

compact algorithm to compute solutions

general existence result via Wave-Front-Tracking

17 / 32
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Multi-class model on networks5

ρc` density of vehicles of class c = 1, . . . , Nc on link I`
ρ` =

∑
c ρ

c
` total traffic density on link I`

∂tρ
c
` + ∂x(ρc`v`(ρ`)) = 0 x ∈ I`, t > 0,

Summing on c = 1, . . . , Nc we get

∂tρ` + ∂x(ρ`v`(ρ`)) = 0 x ∈ I`, t > 0,

5[Garavello-Piccoli, CMS 2005; Cristiani-Priuli, NHM 2015; Samanayarake&al, Tr. Sci.
2018]
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Multi-class junction conditions

1 Compose the total distribution matrix.
Ac =

{
acji
}
i,j

distribution matrices for each class c = 1, . . . , Nc. Set

A := {aji}, where aji :=

Nc∑
c=1

acji
ρci
ρi

(1)

weighted distribution matrix for the total density of the populations at
the junction.

2 Compute the fluxes (γ̄1, . . . , γ̄n+m)
using the selected Riemann solver RSJ = RSAJ corresponding to (1).

3 Distribute the fluxes among the various classes.
The incoming and outgoing fluxes for each class are given by

γ̄ci =
ρci
ρi
γ̄i, i = 1, . . . , n, γ̄cj =

n∑
i=1

acjiγ̄
c
i , j = n+ 1, . . . , n+m.
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Strategy modeling on network (static)

Goal: minimize the weighted distance from the target T c

Value function
uc`(y) = inf {dc(y, x) : x ∈ T c}

where

dc(y, x) = inf

{∫ L`

y

1

gc(ρ`(z, t))
dz +

∑
i

∫ Li

0

1

gc(ρ`i(z, t))
dz

}

gc being the running cost, thus giving the “shortest path”

21 / 32
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Strategy modeling on network (cont’d)

Weighted distance from the target T c: uc` viscosity solution of
∂xu

c
` + 1

gc(ρ`(x,t))
= 0 x ∈ I`, t > 0, (static)

min
`∈Out(Jk)

uc`(t, 0) = uc`(t, Ll) Jk ∈ J \ T c, l ∈ Inc(Jk)

uc`(L`) = 0 , π`(L`) ∈ T c

where gc is the running cost (gc ≡ 1 or gc = v`)

−→ eikonal equation on network
[Schieborn-Camilli 2013; Camilli-Festa-Schieborn 2013]
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where gc is the running cost (gc ≡ 1 or gc = v`)

−→ eikonal equation on network
[Schieborn-Camilli 2013; Camilli-Festa-Schieborn 2013]

We set
ūc = min

j∈Out(Jk)
ucj(0)

and

αcji =
ψ(ucj(t, 0)− ūc)∑

z∈Out(Jk) ψ(ucz(t, 0)− ūc)

with ψ activation function
(e.g. ψ(x) = χ]−∞,0](x) or ψ(x) = 1/(1 + e−ε(S−2x)))
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System discretization

Conservation laws:

ρc,ν+1
`,1 = ρc,ν`,1 −

∆t

∆x`,1

(
ρc,ν`,1
ρν`,1

F ν`,1 − γ̄c,ν`,1

)

ρc,ν+1
`,h = ρc,ν`,h −

∆t

∆x`,h

(
ρc,ν`,h
ρν`,h

F ν`,h −
ρc,ν`,h−1

ρν`,h−1

F ν`,h−1

)

ρc,ν+1
`,N`

= ρc,ν`,N` −
∆t

∆x`,N`

(
γ̄c,ν`,N` −

ρc,ν`,N`−1

ρν`,N`−1

F ν`,N`−1

)
where
F ν`,h = F`(ρ

ν
`,h, ρ

ν
`,h+1) := min

{
D`(ρ

ν
`,h), S`(ρ

ν
`,h+1)

}
(Godunov scheme)

∆t ≤ min`,h ∆x`,h/V` (CFL condition)

Eikonal equations:

uc,ν`,h+1 − u
c,ν
`,h

∆x`,h
+

1

gc(ρν`,h)
= 0

uc,ν`,N` = min
i∈Out(Jk)

uc,νi,1 , x`,N` = Jk ∈ J

23 / 32
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System discretization (cont’d)

Junction coupling conditions:

ūc,ν = min
i∈Out(Jk)

uc,νi,1

ac,νji =
ψ(uc,νj,1 − ū

c,ν)∑
z∈Out(Jk) ψ(uc,νz,1 − ūc,ν)

Aνk =

{
Nc∑
c=1

ac,νji
ρc,νi,Ni
ρνi,Ni

}
ji

(γ̄ν`1 , ..., γ̄
ν
`nk+mk

) = RSAν
k
(ρν`1 , ..., ρ

ν
`nk+mk

)

γ̄c,νi,Ni =
ρc,νi,Ni
ρνi,Ni

γ̄νi , i ∈ Inc(Jk),

γ̄c,νj,1 =

`nk∑
i=`1

ac,νji γ̄
c,ν
i , j ∈ Out(Jk),

Initial and boundary conditions

ρc,0`,h =
1

∆x`,h

x`,h+1∫
x`,h

ρ̄c`(x)dx, uc,ν`,N` = ρc,ν`,N` = 0, x`,N` ∈ T
c,
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Test 1: simple network with one populatiion

1

1.0

2
0.7

3
0.7

4

1.0

5

1.0
1 2

3

4 5

We assume that the network is empty at t = 0, we consider a single
population with constant inflow φ(t) = 0.5 at node 1 for t ∈ [0, 6] and
we set φ(x) = 0 for t ∈ ]6, 12].
The space and time meshes are set to ∆x = 0.05 and ∆t = 0.01,
respectively.
If the agents are simply-informed, i.e. g(ρ) ≡ 1, the whole population
follows the path 1-2-4-5, since it is the shortest path to destination.
Smooth activation function ψ(x) = 1/(1 + e−(S−2x))
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Test 1: results

0 2 4 6 8
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−1.5
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0 0.1 0.2 0.3 0.4 0.5

(a) Simply-informed

0 2 4 6 8

−2

−1.5

−1

−0.5

0
0.5
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0.231 0.365

0 0.1 0.2 0.3 0.4 0.5

(b) Informed

0 2 4 6 8

−2

−1.5

−1

−0.5

0
0.5
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0.253 0.364

0 0.1 0.2 0.3 0.4 0.5

(c) Highly-informed

Figure: Simple network with 5 roads; ρ at t = 6 sec is depicted; maxx∈I` ρ`(x, 6) is
reported below the streets.
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Figure: Time evolution of the density ρ2(t, 0) and ρ4(t, 0) at intersection 2
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Test 2: Braess’ Paradox
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We take a constant inflow φ(t) = 0.5 at the junction 1 for t ∈ [0, 6], we
set φ(t) = 0 for t ∈ ]6, 15]

The space and time meshes are set to ∆x = 0.05 and ∆t = 0.01.
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Test 2: results

We compare the performances of the two networks in the terms of travel
time TT (1, 6, t) for t ∈ [0, 12], i.e. the time needed by a single vehicle
starting at node 1 at time t to reach the destination node 6.
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Figure: Travel time TT (1, 6, t), t ∈ [0, 15], for different levels of information. Here
ε = {1, 2, 3}
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Test 3: two populations

We consider again the Braess’ 4-roads and 5-roads networks.
We compare the behaviour of two populations with a different
information level: we compare their mean travel times (MTT) on the
interval [0, T ]:

MTT (xi, xj) =
1

T

[T/∆t]∑
k=1

TT (xi, xj , k∆t). (2)
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Figure: MTT (1,6) depending on the populations ratio P ∈ [0, 1].
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Conclusion

A. Festa and P. Goatin, Modeling the impact of on-line navigation devices
in traffic flows, 2019 IEEE 58th Conference on Decision and Control
(CDC), Nice, France (2019), 323-328.

A. Festa, P. Goatin and F. Vicini, Navigation system based routing
strategies in traffic flows on networks, submitted

Multi-population model accounting for routing choices:

Can be applied to any Riemann Solver at junction

Solves eikonal equations on networks

Reproduces expected behaviour

Can be extended to route choice based on traffic forecast

Convergence?
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