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Conservation laws on networks1

Networks

Finite collection of directed arcs I` = ]a`, b`[ connected by nodes

I1

I2

I3

I4

I5 I6

I7

I8 I9

1[Holden-Risebro 1995; Garavello-Piccoli 2006]
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LWR model2

Non-linear transport equation: PDE for mass conservation

∂tρ+ ∂xf(ρ) = 0 x ∈ R, t > 0

ρ = ρ(t, x) ∈ [0, ρmax] mean traffic density
f(ρ) = ρv(ρ) flux function

Empirical flux-density relation: fundamental diagram

ρρcr ρmax

fmax

f(ρ)

0

Greenshields ’35

ρρcr ρmax

fmax

f(ρ)

vf
fmax

ρmax−ρcr

Newell-Daganzo

2[Lighthill-Whitham 1955; Richards 1956]
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Extension to networks

m incoming arcs
n outgoing arcs
junction

LWR on networks:
[Holden-Risebro, 1995; Coclite-Garavello-Piccoli, 2005; Garavello-Piccoli, 2006]

LWR on each road
Optimization problem at the junction

Modeling of junctions with a buffer:
[Herty-Lebacque-Moutari, 2009; Garavello-Goatin, 2012; Garavello, 2014;

Bressan-Nguyen, 2015; LaurentBrouty&al, 2019]

Junction described by one or more buffers
Suitable for optimization and Nash equilibrium problems
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Riemann problem at point junctions

{
∂tρ` + ∂xf`(ρ`) = 0
ρ`(0, x) = ρ`,0

` = 1, . . . , n+m

Riemann solver: RSJ : (ρ1,0, . . . , ρn+m,0) 7−→ (ρ̄1, . . . , ρ̄n+m) s.t.
conservation of cars:

∑n
i=1 fi(ρ̄i) =

∑n+m
j=n+1 fj(ρ̄j)

waves with negative speed in incoming roads
waves with positive speed in outgoing roads

Consistency condition:

RSJ
(
RSJ(ρ1,0, . . . , ρn+m,0)

)
= RSJ(ρ1,0, . . . , ρn+m,0) (CC)

Set γ̄` = f`(ρ̄`)
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Dynamics at junctions

(A) prescribe a fixed distribution of traffic in outgoing roads

A = {aji} ∈ Rm×n : 0 < aji < 1,

n+m∑
j=n+1

aji = 1

outgoing fluxes = A· incoming fluxes
=⇒ conservation through the junction

(B) maximize the flux through the junction
=⇒ entropy condition

(A)+(B) equivalent to a LP optimization problem which gives a unique
solution to RPs (under suitable hypotheses on A)

More incoming than outgoing roads =⇒ priority parameters
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Demand & Supply 3

Incoming roads i = 1, . . . , n:

γmax
i (ρi,0) =

{
fi(ρi,0) if 0 ≤ ρi,0 < ρcr

fmax
i if ρcr ≤ ρi,0 ≤ 1

ρ

, f(ρ)γmax
i

fmax(ρ)

Outgoing roads j = n+ 1, . . . , n+m:

γmax
j (ρj,0) =

{
fmax
j if 0 ≤ ρj,0 ≤ ρcr

fj(ρj,0) if ρcr < ρj,0 ≤ 1

ρ

, f(ρ)γmax
j

fmax(ρ)

Admissible fluxes at junction: Ω` = [0, γmax
` ]

3[Lebacque]
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Priority Riemann Solver4

(A) distribution matrix of traffic from incoming to outgoing roads

A = {aji} ∈ Rm×n : 0 ≤ aji ≤ 1,

n+m∑
j=n+1

aji = 1

(B) priority vector

P = (p1, . . . , pn) ∈ Rn : pi > 0,

n∑
i=1

pi = 1

(C) feasible set

Ω =

{
(γ1, · · · , γn) ∈

n∏
i=1

Ωi : A · (γ1, · · · , γn)T ∈
n+m∏
j=n+1

Ωj

}

4[DelleMonache-Goatin-Piccoli, CMS 2018]
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Priority Riemann Solver

Algorithm 1 Recursive definition of PRS
Set J = ∅ and Jc = {1, . . . , n} \ J .
while |J | < n do
∀i ∈ Jc → hi = max{h : h pi ≤ γmaxi } =

γmaxi
pi

,

∀j ∈ {n+ 1 . . . , n+m} → hj = sup{h :
∑
i∈J ajiQi + h(

∑
i∈Jc ajipi) ≤

γmaxj }.
Set ~ = minij{hi, hj}.
if ∃ j s.t. hj = ~ then
Set Q = ~P and J = {1, . . . , n}.

else
Set I = {i ∈ Jc : hi = ~} and Qi = ~ pi for i ∈ I.
Set J = J ∪ I.

end if
end while
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PRS in practice

2× 2 junction (n = 2, m = 2):

γ2

γ1

γmax
1

γmax
2

P

γmax
3 = a3,1γ1 + a3,2γ2

γmax
4 = a4,1γ1 + a4,2γ2

1 Define the spaces of the
incoming fluxes

2 Consider the demands

3 Trace the supply lines

4 The feasible set is given
by Ω

5 Trace the priority line

Different situations can occur
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PRS: optimal point

P intersects the supply lines in ∂Ω

γ2

γ1

γmax
1

γmax
2

γmax
3

γmax
4

Q

P
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PRS: optimal point

P intersects the supply lines outside Ω

γ2

γ1

γmax
1

γmax
2

γmax
3

γmax
4

Q
P
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PRS

Definition (PRS)

Q = (γ̄1, . . . , γ̄n) incoming fluxes defined by Algorithm 1
A ·QT = (γ̄n+1, . . . , γ̄n+m)T outgoing fluxes
Set

ρ̄i =

{
ρi,0 if f(ρi,0) = γ̄i

ρ ≥ ρcr s.t. f(ρ) = γ̄i
i ∈ {1, . . . , n}

ρ̄i =

{
ρj,0 if f(ρj,0) = γ̄i

ρ ≤ ρcr s.t. f(ρ) = γ̄j
j ∈ {n+ 1, . . . , n+m}

Then, PRS : [0, ρmax]n+m → [0, ρmax]n+m is given by

PRS(ρ1,0, . . . , ρn+m,0) = (ρ̄1, . . . , ρ̄n, ρ̄n+1, . . . , ρ̄n+m) .

Remark: PRS may be obtained as limit of solvers defined by Dynamic
Traffic Assignment based on junctions with queues
[Bressan-Nordli, NHM, 2017]
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Cauchy problem: existence results

Theorem (DelleMonache-Goatin-Piccoli, CMS 2018)

If a Riemann solver satisfies (P1)-(P3), then every Cauchy problem with
BV initial data admits a weak solution.

Proof: Wave-Front Tracking, bound on TV(f) and “big shocks”.

Proposition (DelleMonache-Goatin-Piccoli, CMS 2018)

The Priority Riemann Solver PRS satisfies (P1)-(P3) for junctions with
n ≤ 2, m ≤ 2 and 0 < aji < 1 for all i, j.

16 / 32
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PRS: summary

General Riemann Solver at junctions:

no restrictions on A

no restrictions on the number of roads

priorities come before flux maximization

compact algorithm to compute solutions

general existence result via Wave-Front-Tracking

17 / 32
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Multi-class model on networks5

ρc` density of vehicles of class c = 1, . . . , Nc on link I`
ρ` =

∑
c ρ

c
` total traffic density on link I`

∂tρ
c
` + ∂x(ρc`v`(ρ`)) = 0 x ∈ I`, t > 0,

Summing on c = 1, . . . , Nc we get

∂tρ` + ∂x(ρ`v`(ρ`)) = 0 x ∈ I`, t > 0,

5[Garavello-Piccoli, CMS 2005; Cristiani-Priuli, NHM 2015; Samanayarake&al, Tr. Sci.
2018]
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Multi-class junction conditions

1 Compose the total distribution matrix.
Ac =

{
acji
}
i,j

distribution matrices for each class c = 1, . . . , Nc. Set

A := {aji}, where aji :=

Nc∑
c=1

acji
ρci
ρi

(1)

weighted distribution matrix for the total density of the populations at
the junction.

2 Compute the fluxes (γ̄1, . . . , γ̄n+m)
using the selected Riemann solver RSJ = RSAJ corresponding to (1).

3 Distribute the fluxes among the various classes.
The incoming and outgoing fluxes for each class are given by

γ̄ci =
ρci
ρi
γ̄i, i = 1, . . . , n, γ̄cj =

n∑
i=1

acjiγ̄
c
i , j = n+ 1, . . . , n+m.
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Strategy modeling on network (static)

Goal: minimize the weighted distance from the target T c

Value function
uc`(y) = inf {dc(y, x) : x ∈ T c}

where

dc(y, x) = inf

{∫ L`

y

1

gc(ρ`(z, t))
dz +

∑
i

∫ Li

0

1

gc(ρ`i(z, t))
dz

}

gc being the running cost, thus giving the “shortest path”

21 / 32
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Strategy modeling on network (cont’d)

Weighted distance from the target T c: uc` viscosity solution of
∂xu

c
` + 1

gc(ρ`(x,t))
= 0 x ∈ I`, t > 0, (static)

min
`∈Out(Jk)

uc`(t, 0) = uc`(t, Ll) Jk ∈ J \ T c, l ∈ Inc(Jk)

uc`(L`) = 0 , π`(L`) ∈ T c

where gc is the running cost (gc ≡ 1 or gc = v`)

−→ eikonal equation on network
[Schieborn-Camilli 2013; Camilli-Festa-Schieborn 2013]
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where gc is the running cost (gc ≡ 1 or gc = v`)

−→ eikonal equation on network
[Schieborn-Camilli 2013; Camilli-Festa-Schieborn 2013]

We set
ūc = min

j∈Out(Jk)
ucj(0)

and

αcji =
ψ(ucj(t, 0)− ūc)∑

z∈Out(Jk) ψ(ucz(t, 0)− ūc)

with ψ activation function
(e.g. ψ(x) = χ]−∞,0](x) or ψ(x) = 1/(1 + e−ε(S−2x)))
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System discretization

Conservation laws:

ρc,ν+1
`,1 = ρc,ν`,1 −

∆t

∆x`,1

(
ρc,ν`,1
ρν`,1

F ν`,1 − γ̄c,ν`,1

)

ρc,ν+1
`,h = ρc,ν`,h −

∆t

∆x`,h

(
ρc,ν`,h
ρν`,h

F ν`,h −
ρc,ν`,h−1

ρν`,h−1

F ν`,h−1

)

ρc,ν+1
`,N`

= ρc,ν`,N` −
∆t

∆x`,N`

(
γ̄c,ν`,N` −

ρc,ν`,N`−1

ρν`,N`−1

F ν`,N`−1

)
where
F ν`,h = F`(ρ

ν
`,h, ρ

ν
`,h+1) := min

{
D`(ρ

ν
`,h), S`(ρ

ν
`,h+1)

}
(Godunov scheme)

∆t ≤ min`,h ∆x`,h/V` (CFL condition)

Eikonal equations:

uc,ν`,h+1 − u
c,ν
`,h

∆x`,h
+

1

gc(ρν`,h)
= 0

uc,ν`,N` = min
i∈Out(Jk)

uc,νi,1 , x`,N` = Jk ∈ J

23 / 32
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System discretization (cont’d)

Junction coupling conditions:

ūc,ν = min
i∈Out(Jk)

uc,νi,1

ac,νji =
ψ(uc,νj,1 − ū

c,ν)∑
z∈Out(Jk) ψ(uc,νz,1 − ūc,ν)

Aνk =

{
Nc∑
c=1

ac,νji
ρc,νi,Ni
ρνi,Ni

}
ji

(γ̄ν`1 , ..., γ̄
ν
`nk+mk

) = RSAν
k
(ρν`1 , ..., ρ

ν
`nk+mk

)

γ̄c,νi,Ni =
ρc,νi,Ni
ρνi,Ni

γ̄νi , i ∈ Inc(Jk),

γ̄c,νj,1 =

`nk∑
i=`1

ac,νji γ̄
c,ν
i , j ∈ Out(Jk),

Initial and boundary conditions

ρc,0`,h =
1

∆x`,h

x`,h+1∫
x`,h

ρ̄c`(x)dx, uc,ν`,N` = ρc,ν`,N` = 0, x`,N` ∈ T
c,
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Test 1: simple network with one populatiion

1

1.0

2
0.7

3
0.7

4

1.0

5

1.0
1 2

3

4 5

We assume that the network is empty at t = 0, we consider a single
population with constant inflow φ(t) = 0.5 at node 1 for t ∈ [0, 6] and
we set φ(x) = 0 for t ∈ ]6, 12].
The space and time meshes are set to ∆x = 0.05 and ∆t = 0.01,
respectively.
If the agents are simply-informed, i.e. g(ρ) ≡ 1, the whole population
follows the path 1-2-4-5, since it is the shortest path to destination.
Smooth activation function ψ(x) = 1/(1 + e−(S−2x))
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Test 1: results

0 2 4 6 8
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−1.5
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0 0.1 0.2 0.3 0.4 0.5

(a) Simply-informed

0 2 4 6 8

−2

−1.5

−1

−0.5

0
0.5
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0.231 0.365

0 0.1 0.2 0.3 0.4 0.5

(b) Informed

0 2 4 6 8

−2

−1.5

−1

−0.5

0
0.5
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0.253 0.364

0 0.1 0.2 0.3 0.4 0.5

(c) Highly-informed

Figure: Simple network with 5 roads; ρ at t = 6 sec is depicted; maxx∈I` ρ`(x, 6) is
reported below the streets.
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Figure: Time evolution of the density ρ2(t, 0) and ρ4(t, 0) at intersection 2
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Test 2: Braess’ Paradox
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We take a constant inflow φ(t) = 0.5 at the junction 1 for t ∈ [0, 6], we
set φ(t) = 0 for t ∈ ]6, 15]

The space and time meshes are set to ∆x = 0.05 and ∆t = 0.01.
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Test 2: results

We compare the performances of the two networks in the terms of travel
time TT (1, 6, t) for t ∈ [0, 12], i.e. the time needed by a single vehicle
starting at node 1 at time t to reach the destination node 6.
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Figure: Travel time TT (1, 6, t), t ∈ [0, 15], for different levels of information. Here
ε = {1, 2, 3}
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Test 3: two populations

We consider again the Braess’ 4-roads and 5-roads networks.
We compare the behaviour of two populations with a different
information level: we compare their mean travel times (MTT) on the
interval [0, T ]:

MTT (xi, xj) =
1

T

[T/∆t]∑
k=1

TT (xi, xj , k∆t). (2)
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Figure: MTT (1,6) depending on the populations ratio P ∈ [0, 1].
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Conclusion

A. Festa and P. Goatin, Modeling the impact of on-line navigation devices
in traffic flows, 2019 IEEE 58th Conference on Decision and Control
(CDC), Nice, France (2019), 323-328.

A. Festa, P. Goatin and F. Vicini, Navigation system based routing
strategies in traffic flows on networks, submitted

Multi-population model accounting for routing choices:

Can be applied to any Riemann Solver at junction

Solves eikonal equations on networks

Reproduces expected behaviour

Can be extended to route choice based on traffic forecast

Convergence?

Dr. Paola Goatin
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