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Abstract. We study PDE-constrained optimization problems where the state
equation is solved by a pseudo-time stepping or fixed point iteration. We
present a technique that improves primal, dual feasibility and optimality si-
multaneously in each iteration step, thus coupling state and adjoint iteration
and control/design update. Our goal is to obtain bounded retardation of this
coupled iteration compared to the original one for the state, since the latter
in many cases has only a Q-factor close to one. For this purpose and based on
a doubly augmented Lagrangian, which can be shown to be an exact penalty
function, we discuss in detail the choice of an appropriate control or design
space preconditioner, discuss implementation issues and present a convergence
analysis. We show numerical examples, among them applications from shape
design in fluid mechanics and parameter optimization in a climate model.
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1. Introduction

Design optimization or control problems with PDEs may be distinguished from
general nonlinear programming problems by the fact that the vector of variables
is partitioned into a state vector � ∈ � and control or design variables � ∈ � ⊂ � .
For applications of this scenario in Computational Fluid Dynamics (CFD) see for
example [22, 27, 28]. In this paper, we aim to solve an optimization problem

min
�,�

�(�, �) s.t. �(�, �) = 0, (1.1)
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where the constraint or state equation is solved by an iterative process. Usually, the
admissible set � is a closed convex subset of the design space � . For simplicity, we
assume that � and � are Hilbert spaces. When � and � have finite dimensions
� = dim(� ) and 	 = dim(�), their elements may be identified by coordinate
vectors in ℝ

� and ℝ
� with respect to suitable Hilbert bases. This convention

allows us to write duals as transposed vectors and inner products as the usual
scalar products in Euclidean space.

The problem of augmenting fixed point solvers for PDEs with sensitivity and
optimization has been considered by various authors during the last few years
[13, 17, 19, 18, 11, 24]. In [17], the author studied a One-Shot approach involv-
ing preconditioned design corrections to solve design optimization problems. It is
an approach that aims at attaining feasibility and optimality simultaneously (see
[17, 11]). In fact, within one step the primal, dual and design variables are updated
simultaneously. Using automatic differentiation [14, 16] this requires only one si-
multaneous evaluation of the function value with one directional and one adjoint
derivative. The focus in [17] was about the derivation of an “ideal” preconditioner
that ensures local contractivity of the three coupled iterative processes. From an-
alyzing the eigenvalues of the associated Jacobian, the author derived necessary
but not sufficient conditions to bound those eigenvalues below 1 in modulus.

Deriving a preconditioner that ensures even local convergence of the three
coupled iteration seems to be quite difficult. Instead, we study in this paper the
introduction of an exact penalty function of doubly augmented Lagrangian type
(see [6, 7, 8, 9]) to coordinate the three iterative processes. This penalty function is
defined from the Lagrangian of the optimization problem augmented by weighted
primal and dual residuals. The approach should be useful for any combination and
sequencing of steps for improving primal, dual feasibility and optimality. In this
work we firstly analyze the dual retardation behavior that means the slow down
in the overall convergence when the adjoint is coupled with the primal iteration.
Section 3 is devoted to derive conditions on the involved weighting coefficients
in view of a consistent reduction of the considered exact penalty function. In
Section 4, we establish reasonable choices for the weighting coefficients. Then we
elaborate a line search procedure that does not require the computation of any
second derivatives of the original problem and propose a suitable preconditioner
in Section 5. We show a global convergence result in Section 6 and present three
examples in Sections 7–9.

1.1. Problem statement

We suppose that the constraint �(�, �) = 0 is solved by a fixed point iteration and
can be thus be equivalently written as � = 
(�, �). We assume that � and 
 are
�2,1 functions on the closed convex set � ×�, and that the Jacobian 
� := ∂
/∂�
has a spectral radius � < 1. Then, for a suitable inner product norm ∥.∥, we have

∥
�(�, �)∥ = ∥
⊤
� (�, �)∥ ≤ � < 1. (1.2)
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Hence, the mean value theorem implies on any convex subdomain of � that 
 is
a contraction. By Banach fixed point theorem, for fixed �, the sequence ��+1 =

(��, �) converges to a unique limit �∗ = �∗(�). The Lagrangian associated to the
constrained optimization problem is

�(�, �̄, �) = �(�, �) + (
(�, �) − �)⊤�̄ = �(�, �̄, �) − �⊤�̄,

where we introduced is the shifted Lagrangian � as

�(�, �̄, �) := �(�, �) + 
(�, �)⊤�̄.

Furthermore, according to the first-order necessary condition [1], a KKT point
(�∗, �̄∗, �∗) of the optimization problem (1.1) must satisfy

�∗ = 
(�∗, �∗)
�̄∗ = ��(�∗, �̄∗, �∗)⊤ = ��(�∗, �∗)⊤ + 
�(�∗, �∗)⊤�̄∗

0 = ��(�∗, �̄∗, �∗)⊤ = ��(�∗, �∗)⊤ + 
�(�∗, �∗)⊤�̄∗.

⎫
⎬

⎭
(1.3)

Denoting by ℱ := {� = (�, �) ∈ � ×� : � = 
(�, �)} the feasible set, any � in the
tangent plane � can be represented by the Implicit Function Theorem as � = ��̃
where �̃ ∈ ℝ

� and

� =

[
(� −
�)−1
�

�

]

.

In view of (1.2), we have that � − 
� is invertible. Therefore, ℱ is a smooth
manifold of dimension dim(�) = 	 with tangent space spanned by the columns of
�. According to the second-order necessary condition, the reduced Hessian

� = �⊤���� where ��� =

[
��� ���

��� ���

]

, (1.4)

must be positive semi-definite at a local minimizer. We will make the slightly
stronger assumption of second-order sufficiency, i.e., � is positive definite.

1.2. One-shot strategy

Motivated by (1.3), one can use the following coupled full step iteration, called
One-shot strategy, to reach a KKT point (see [17, 11]):

��+1 = 
(��, ��),
�̄�+1 = ��(��, �̄�, ��)⊤,
��+1 = �� −�−1

� ��(��, �̄�, ��)⊤.

⎫
⎬

⎭
(1.5)

Here, �� is a design space preconditioner which must be selected to be symmetric
positive definite. The contractivity (1.2) ensures that the first equation in the cou-
pled full step (1.5) converges �-linearly for fixed �. Although the second equation
exhibits a certain time-lag, it converges with the same asymptotic R-factor (see
[19]). As far as the convergence of the coupled iteration (1.5) is concerned, the
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goal is to find �� that ensures that the spectral radius of the coupled iteration
(1.5) stays below 1 and as close as possible to �. We use the following notations:

Δ�� := 
(��, ��) − ��,
Δ�̄� := ��(��, �̄�, ��)⊤ − �̄�,
Δ�� := −�−1

� ��(��, �̄�, ��)⊤.

2. Dual retardation

Since the solution �̄∗ of the second equation introduced in (1.3) depends on the
primal solution �∗, it cannot be computed accurately as long as �∗ is not known,
and the dual iterates �̄� computed from the second equation will be affected by the
remaining inaccuracy in the primal iterates ��. Actually, the dual step corrections
typically lag a little bit behind as the perturbations caused by the errors in the
primal iterates tend to accumulate initially. We refer to this delay of convergence
relative to the primal iterates as dual retardation. Nevertheless, asymptotically
the dual correction steps tend to be no larger than the primal correction steps.

Theorem 2.1. For � fixed let �,
 be once Lipschitz continuously differentiable with
respect to � near the fixed point �∗ = �∗(�) of 
, and let �� → �∗ such that

lim
�→∞

∥Δ��∥
∥Δ��−1∥ = �∗ := ∥
�(�∗, �)∥.

Now define for any �, �, � > 0 the smallest pair of integers (ℓ�	, ℓ
�

) such that

√
�∥Δ�ℓ��∥ ≤ � and

√
�∥Δ�̄ℓ�

�
∥ ≤ �.

Then, we have

lim
�→0

sup
ℓ�

ℓ�	

≤ 1. (2.1)

Proof. See [21, Theorem 2.1]. □

One can show that this result is sharp considering the scalar case with the
cost function

�(�) =
�

2
�2 + ��, � ∈ ℝ, � ∈ ℝ, � ∈ ℝ

∗
+,

and 
(�, �) = �� + � with 0 < � < 1. The coupled primal and dual iteration is

��+1 = ��� + �,

�̄�+1 = ��̄� + ��� + �.

Then, we get the limit in (2.1) is 1. For details see again [21].
As we will see later, a more or less rather natural choice for the weights �, �

is
√
�/� = (1 − �)/�. If we use ∣Δ�0∣ = 1,

√
�/� = (1 − �)/�, we can show that

in this example ∣Δ��∣ = �� and
√
�/�∣Δ�̄�∣ = �(1 − �)��−1.
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3. Doubly augmented Lagrangian

The asymptotic rate of convergence of the coupled iteration (1.5) to a limit point
(�∗, �̄∗, �∗) is determined by the spectral radius �̂( ∗) of the block Jacobian:

 ∗ =
∂(��+1, �̄�+1, ��+1)

∂(��, �̄�, ��)

∣
∣
∣
∣
(�∗,�̄∗,�∗)

=

⎡

⎣

� 0 
�

��� 
⊤
� ���

−�−1��� −�−1
⊤
� � −�−1���

⎤

⎦ .

In [17], the author proved that unless they happen to coincide with those of 
�,
the eigenvalues of  ∗ solve the following nonlinear eigenvalues problem:

det[(!− 1)� + �(!)] = 0,

where

�(!) = �(!)⊤����(!) and �(!) =

[
(!� −
�)−1
�

�

]

.

As discussed in [17], although the conditions � = �⊤ ≻ 0 and � ≻ 1
2�(−1)

ensure that real eigenvalues of  ∗ stay less than 1, they are just necessary but
not sufficient to exclude real eigenvalues less than −1. In addition, no constructive
condition to also bound complex eigenvalues below 1 in modulus has been found.
However, these do arise even when the underlying primal solver is Jacobi’s method
on the elliptic boundary value problem �′′ = 0 in one space dimension. Therefore,
deriving a design space preconditioner that ensures even local convergence of the
coupled full step iteration (1.5) seems to be quite difficult.

Instead, we base our analysis on the following penalty or merit function of
doubly augmented Lagrangian type (see [6, 7]), defined for �, � > 0:

��(�, �̄, �) :=
�

2
∥
(�, �) − �∥2 +

�

2
∥��(�, �̄, �)⊤ − �̄∥2 + �(�, �̄, �) − �̄⊤�. (3.1)

Now, we aim to solve the optimization problem (1.1) by looking for descent on ��.

3.1. Gradient of ��

In the remainder, we use the notation Δ
� = �−
�. Note that Δ
� is invertible.
By an elementary calculation, we obtain:

Proposition 3.1. The gradient of �� is given by

∇��(�, �̄, �) = −"#(�, �̄, �) , where " =

⎡

⎣
�Δ
⊤

� −� − ���� 0
−� �Δ
� 0

−�
⊤
� −��⊤

�� �

⎤

⎦ , (3.2)

and # is the step increment vector associated with the iteration (1.5)

#(�, �̄, �) =

⎡

⎣

(�, �) − �

��(�, �̄, �)⊤ − �̄
−�−1��(�, �̄, �)⊤

⎤

⎦ . (3.3)
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The gradient ∇�� involves vector derivatives as well as matrix derivatives
where the complexity of their computations may grow with respect to the dimen-
sion of �. To avoid that dependence, we propose an economical computation of
∇�� using Automatic Differentiation (AD), see [16]. Actually, to compute vec-
tor derivatives we can use the reverse mode of the package ADOL-C developed
at Dresden University of Technology [15]. Furthermore, we present two options to

compute terms in ∇�� involving matrix derivatives namely Δ�̄⊤��� and Δ�̄⊤���.
The first option consists on using one reverse sweep of Second Order Adjoint (SOA)
by employing some (AD) tools, like ADOL-C [16] that ensures a cost proportional
to the cost of (�,
) evaluation and independent of dimensions. Whereas the second
option consists on simply using the definition

∂

∂$
(��(� + $Δ�̄, �̄, �))

∣
∣
∣
∣
=0

= ���(�, �̄, �)Δ�̄,

to approximate Δ�̄⊤���. In fact, for $ ∕= 0, we have

Δ�̄⊤���(�, �̄, �) =
��(� + $Δ�̄, �̄, �)⊤ −��(�, �̄, �)⊤

$
+ %($), (3.4)

and thus the Δ�̄⊤��� (and similarly Δ�̄⊤���) can be approximated using (3.4).

4. Conditions on the weights �, �

Here we derive conditions on the weights �, � which in turn influence the merit
function �� to be an exact penalty function and the step increment vector associ-
ated to iteration (1.5) to yield descent on it.

4.1. Correspondence conditions

The first condition characterizes the correspondence between stationary points of
�� and zero increments # of the one-shot iteration, i.e., stationary points of 85.

Corollary 4.1 (Correspondence condition). There is a one-to-one correspondence
between the stationary points of �� and the roots of #, defined in (3.3), wherever

det[��Δ
⊤
� Δ
� − � − ����] ∕= 0,

which is implied by the correspondence condition

��(1 − �)2 > 1 + ��, (4.1)

where � = ∥���∥.
Proof. See [21, Corollary 3.2]. □

The correspondence condition (4.1) now implies that the merit function ��

introduced in (3.1) is an exact penalty function:



Extension of Fixed Point PDE Solvers for Optimal Design 91

Corollary 4.2. If the condition

��Δ
⊤
� Δ
� > � + ����,

holds, then the penalty function �� introduced in (3.1) has a positive definite Hes-
sian at a stationary point of the optimization problem (1.1) if and only if the
reduced Hessian � introduced in (1.4) is positive definite at that point.

Proof. See [21, Corollary 3.3]. □

4.2. Descent properties of the step increment

Here we derive conditions under which the step increment vector # introduced in
(3.3) yields descent on the exact penalty function ��.

Proposition 4.3 (Descent condition). The step increment vector # yields descent
on �� for all large positive � if

��Δ
̄� >

(

� +
�

2
���

)

(Δ
̄�)−1

(

� +
�

2
���

)

, (4.2)

where Δ
̄� = 1
2 (Δ
� + Δ
⊤

� ). Moreover, (4.2) is implied by the condition

√
��(1 − �) > 1 +

�

2
�. (4.3)

Proof. See [21, Proposition 3.4]. □

The design corrections given by the third component in # involve the inverse
of �. Thus, provided (4.3) holds, a pure feasibility step (with fixed design) yields
also descent on ��. Considering a base point

(��−1, �̄�−1, �)

where � ≥ 1 and analyzing �� at the current point

(�� = 
(��−1, �), �̄� = ��(��−1, �̄�−1, �), �),

we can establish a condition that leads to reduction on the exact penalty function
�� using a full pure feasibility step.

Theorem 4.4 (Full step descent condition). Let �, � > 0 satisfy

� >
�(�� + 2)

1 − �2
+

(5 + �(1 + ��))2

�(1 − �2)2
. (4.4)

Then a full pure feasibility step yields descent in ��, i.e.,

��(��, �̄�, �) − ��(��−1, �̄�−1, �) < 0.

Proof. See [21, Theorem 3.6] □

Note that the descent condition (4.3) is a bit stronger than the correspondence
condition (4.1). However, the condition (4.4) is stronger than (4.3).
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4.3. Bounded level sets of ��

In order to establish a global convergence result, we show that under reasonable
assumptions all level sets of the doubly augmented Lagrangian �� are bounded.

Theorem 4.5. Let � ∈ �1,1(� × �) be radially unbounded and satisfy

lim inf
∥�∥+∥�∥→∞

�

∥∇��∥2 > 0. (4.5)

Then there exists (�, �) fulfilling (4.3) such that

lim
∥�∥+∥�̄∥+∥�∥→∞

��(�, �̄, �) = +∞. (4.6)

If the limit in (4.5) is equal to infinity, the assertion (4.6) holds without any
additional restriction on (�, �).

Proof. See [20, Theorem 2.1]. □
Assumption (4.5) requires that � grows quadratically or slower as a function

of ∥�∥ + ∥�∥. If for example � is quadratic, i.e.,

�(&) =
1

2
&⊤'& + (⊤& where ' ∈ ℝ

�,�, '⊤ = ' ≻ 0, (, & ∈ ℝ
�,

we have (with !min, !max the smallest and biggest eigenvalue, respectively, of ')

lim
∥�∥→∞

�(&)

∥∇�(&)∥2 =
1

2
lim

∥�∥→∞
&⊤'&
∥'&∥2 ≥ !min

2∥'∥22
=

!min

2!2
max

> 0.

4.4. Particular choice of � and �

To ensure consistent reduction on ��, a rather large primal weight � may be
necessary, which severely restricts the step size and slows down the convergence.
We present two options to compute the �, � based on selecting � as small as
possible which is still fulfilling at least the condition (4.3) or (4.4) as an equality.

Option 1: Deriving �, � from (4.3) and minimizing � as a function of � leads to

�1 =
2

�
and �1 =

2�

(1 − �)2
. (4.7)

Option 2: Deriving �, � from the condition (4.4):
Fulfilling (4.4) as an equality implies

� =
�2�2 + 2�(1 + 5�)� + 5(5 + 2�) + �2

�(1 − �2)2
. (4.8)

Minimizing the right-hand side with respect to � gives

�2 =

√
5(5 + 2�) + �2

�
and �2 =

2�(1 + 5� + ��2)

(1 − �2)2
. (4.9)

If as usually � ≈ 1, we obtain

�2 ≈ 6

�
and �2 ≈ 24�

(1 + �)2(1 − �)2
≈ 6�

(1 − �)2
. (4.10)
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4.5. Estimation of problem parameters

To compute the weights we need estimates for � and �. Neglecting the change in
�, they can be obtained from the primal and dual iterates. From (1.2) we have

∥
(��, �) −
(��−1, �)∥ ≤ �∥�� − ��−1∥ for all � ∈ ℕ.

Therefore, starting with an initial value �0, we may update � using

��+1 = max{ ∥Δ��∥
∥Δ��−1∥ , )��},

where ) ∈ (0, 1). To estimate the value of �, we use the approximation
[
Δ��+1

Δ�̄�+1

]

≈
[


�(��, ��) 0
���(��, �̄�, ��) 
�(��, ��)⊤

] [
Δ��
Δ�̄�

]

.

Then, we obtain
[

Δ�̄�
−Δ��

]⊤ [
Δ��+1

Δ�̄�+1

]

≈ −(Δ��)⊤���(��, �̄�, ��)Δ��,

and

(Δ��)⊤���(��, �̄�, ��)Δ�� ≈ (Δ��)⊤Δ�̄�+1 − (Δ�̄�)⊤Δ��+1.

Thus, one can approximate the value of � as follows:

��+1 ≈ max{ ∣(Δ��)⊤Δ�̄�+1 − (Δ�̄�)⊤Δ��+1∣
∥Δ��∥2 , )��}.

As far as numerical experiments are concerned, we obtained the best results when
��� = � which theoretically can be attained by using a coordinate transformation

provided that ��� ≻ 0. In fact, let ��� = �
⊤
2
�� �

1
2
�� be the Cholesky factorization

of ���. Then, by considering �̃ = �
1
2
�� � and ˜̄� = �

−⊤
2

�� �̄ we obtain

�̃�(�̃, ˜̄�, �) =
�

2
∥
̃(�̃, �) − �̃∥2 +

�

2
∥�̃�̃(�̃, ˜̄�, �) − ˜̄�∥2 + �̃(�̃, ˜̄�, �) − ˜̄�

⊤
�̃.

where 
̃(�̃, �) = �
1
2
��
(�

− 1
2

�� �̃, �), �̃(�̃, �) = �(�
− 1

2
�� �̃, �) and �̃�̃(�̃, ˜̄�, �) = �̃(�̃, �)+


̃(�̃, �)⊤ ˜̄�. Thus, we get ∇�̃�(�̃, ˜̄�, �) = −"̃#̃(�̃, ˜̄�, �) where

"̃ =

⎡

⎣
�Δ
̃⊤

�̃ −(1 + �)� 0

−� �Δ
̃�̃ 0

−�
̃⊤
� −��̃⊤

�̃� �

⎤

⎦ , #̃(�̃, ˜̄�, �) =

⎡

⎣

̃(�̃, �) − �̃

�̃�̃(�̃, ˜̄�, �)⊤ − ˜̄�

−�−1�̃�(�̃, ˜̄�, �)⊤

⎤

⎦ .

With Δ
̃�̃ = �−�
1
2
�� 
� �

− 1
2

�� , 
̃� = �
1
2
�� 
� and �̃�̃� = �

−⊤
2

�� ���. Furthermore,

�(
̃�̃) = �(
�) = �. Therefore, if we have a state space preconditioner * ≈ �
1
2
��

for which * and *−1 can be evaluated at reasonable cost, then we may use

�̃�(�, �̄, �) =
�

2
∥* (
(�, �)− �)∥2 +

�

2
∥*−⊤(��(�, �̄, �)− �̄)∥2 +�(�, �̄, �)− �̄⊤�.
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Hence, by the same techniques used to prove Proposition 4.3, we obtain the descent
condition associated to the transformed coordinates given by

√
��(1 − �) > 1 +

��̃

2
where �̃ = ∥*−1�

1
2
��∥

and the following approximations:

�1 =
2

�̃
, �1 =

2�̃

(1 − �)2
and �2 =

6

�̃
, �2 =

6�̃

(1 − �)2
.

5. Choice of the preconditioner �

Here, we derive a design space preconditioner � that results in a step # that yields
descent on ��. We assume that �, � are chosen such that (4.1) holds.

5.1. Explicit condition on �

In this subsection, we derive an explicit condition that leads to a first choice for
the design space preconditioner. Since #⊤"# = 1

2#
⊤(" + "⊤)# and using (3.2),

(3.3), we compute the symmetric matrix "� defined as follows:

"� :=
1

2
("⊤ + ") =

⎡

⎢
⎢
⎣

�Δ
̄� −� − �
2��� −�

2
�

−� − �
2��� �Δ
̄� −�

2���

−�
2


⊤
� −�

2�
⊤
�� �

⎤

⎥
⎥
⎦ . (5.1)

Here Δ
̄� is the symmetric matrix given in Proposition 4.3. Therefore, we obtain

#⊤∇�� = −#⊤"�#. (5.2)

Let �
1
2 be a Cholesky factor of �. Rescaling � = �− 1

2 �̃, we find a result similar
to (5.1) involving #̃ and "̃� where #̃ is obtained from the increment vector # by

replacing its third component Δ� = −�−1��
⊤ by

Δ�̃ = �
1
2 Δ� = −�−⊤

2 ��
⊤ = −��̃

⊤

and the matrix "̃� is derived from "� by substituting � with � and all derivatives
with respect to the design � with 
�̃ = 
��

− 1
2 , ��̃ = ���

− 1
2 and ���̃ =

����
− 1

2 . Thus, we get

"̃� =

⎡

⎢
⎢
⎣

�Δ
̄� −� − �
2��� −�

2
�̃

−� − �
2��� �Δ
̄� −�

2���̃

−�
2


⊤
�̃ −�

2�
⊤
��̃ �

⎤

⎥
⎥
⎦ .

and "̃� is obtained from the matrix "� as follows:

"̃� = diag(�, �, �−⊤
2 ) "� diag(�, �, �− 1

2 ). (5.3)

The aim now is to derive explicit conditions on � that ensure positive definiteness
of "̃� which in view of (5.2), (5.3) implies that the increment vector # introduced
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in (3.3) yields descent on ��. In fact it suffices to show positive-definiteness of a

much simpler, real matrix in order to get the desired result for "̃�:

Proposition 5.1. Let � = ∥���∥ and +� be the matrix defined by

+� =

⎡

⎣
�(1 − �) −1 − �

2 � −�
2 ∥
�̃∥

−1 − �
2 � �(1 − �) −�

2 ∥���̃∥
−�

2 ∥
�̃∥ −�
2 ∥���̃∥ 1

⎤

⎦ . (5.4)

Then, we have for all ,1, ,2 ∈ ℝ
� and ,3 ∈ ℝ

�,

⎡

⎣
,1
,2
,3

⎤

⎦

⊤

"̃�

⎡

⎣
,1
,2
,3

⎤

⎦ ≥
⎡

⎣
∥,1∥
∥,2∥
∥,3∥

⎤

⎦

⊤

+�

⎡

⎣
∥,1∥
∥,2∥
∥,3∥

⎤

⎦ .

Proof. See [20, Proposition 3.1]. □

Now we get a condition on � that ensures positive definiteness of +� :

Proposition 5.2. Let � = ∥���∥ and �, � satisfy (4.3). If

(√
�

2
∥
�̃∥ +

√
�

2
∥���̃∥

)2

≤ (1 − �) − (1 + �
2�)2

��(1 − �)
, (5.5)

then +� introduced in (5.4) is a positive definite matrix.

Proof. See [20, Proposition 3.2] □

To get explicit conditions on � that ensure (5.5), we note that

1

2
(
√
�∥
�̃∥ +

√
�∥���̃∥) ≤

∥
∥
∥
∥

√
�
�̃√
����̃

∥
∥
∥
∥
2

=

∥
∥
∥
∥

(√
�
�√
����

)

�− 1
2

∥
∥
∥
∥
2

, (5.6)

and, using a -. decomposition on the right-hand side obtain
∥
∥
∥
∥

(√
�
�√
����

)

�− 1
2

∥
∥
∥
∥

2

2

= ∥.�− 1
2 ∥22 = ∥.�−1.⊤∥2.

As design corrections involve �−1, the aim is to chose it as large as possible. The
largest �−1

0 for which ∥.�−1.⊤∥2 is equal to some / > 0 is .�−1
0 .⊤ = /�, i.e.,

according to (5.6), all preconditioners � satisfying

� = �⊤ ર �0 =
1

/
.⊤. =

1

/
(�
⊤

�
� + ����
⊤���). (5.7)

lead to +� ≻ 0, and thus to a descent on �� by the increment vector #. Here, /
must be chosen such that Proposition 5.2 applies, i.e.,

/ = 1 − �− (1 + �
2�)2

��(1 − �)
> 0. (5.8)
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5.2. Particular choice of weighting coefficients

Now we define weighting coefficients �, � fulfilling (4.3) and independent of all
linear transformation in the design space. If we assume that the rectangular matrix

� ∈ ℝ

�,� has full column rank and denote by � a Cholesky factor such that

⊤
�
� = �⊤� ≻ 0. Then we can show (see [20, Section 3.2]) that

∥�−⊤�0�
−1∥ ≤ 0(�, �) :=

� + 1�

2(�, �)
, (5.9)

where

2(�, �) := 1 − �− (1 + �
2�)2

��(1 − �)
> 0,

1 := ∥�−⊤�⊤
������

−1∥2 = ∥����
−⊤∥22 = max

0∕=�∈�
∥����∥22
∥
⊤

� �∥22
. (5.10)

The ratio 1 quantifies the perturbation of the adjoint equation �� = 0 caused by
a design variation � relative to that in the primal equation. Since the aim is to
maximize �−1 in order to make significant design corrections, we define optimal
penalty weights �, � which satisfy (4.3) and realize a minimum of the function 0.

Proposition 5.3. For 1 > 0 the function 0 in (5.9) reaches its minimum for

� =
3

√
�2 + 31(1 − �)2 + �

2

and � = 1
�(1 + �

2�)

1 − �
2�

. (5.11)

Proof. See [20, Proposition 3.3 and Appendix]. □
For 1 = 0 this directly gives � = 2/�. Combining both equations in (5.11)

(with 1 kept in there) and setting 1 = 0 afterwards gives

� =
4�

(1 − �)2
. (5.12)

5.3. Suitable � and relation to ∇���
�

Here, using �0 derived in (5.7) we define a suitable � and establish its relation to
the Hessian of �� with respect to the design. We consider Δ� such that

min
Δ�

��(� + Δ�, �̄ + Δ�̄, � + Δ�).

Using a quadratic approximation of ��, assuming ∇���
� ≻ 0 and ��� ર 0, we

define a suitable design space preconditioner � from (5.7) and (5.8) such that

� = �0 +
1

/
��� =

1

/

(
�
⊤

�
� + ��⊤
����� + ���

)
. (5.13)

In view of (5.7) the increment vector # obtained using the preconditioner � in-
troduced in (5.13) yields descent on ��. In addition, we have � ≈ ∇���

�. This
approximation turns to an equality at primal and dual feasibility. Besides, as ��

is an exact penalty function, we have ∇2�� ≻ 0 in a neighborhood of a local
minimizer and then in particular ∇���

� = � ≻ 0.
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5.4. BFGS update to an approximation of �

As the suitable preconditioner � derived in (5.13) involves matrix derivatives
which may be costly evaluated, numerically we use the BFGS method to update
its approximation ��. In view of the relation � ≈ ∇���

� established in the
previous subsection, we use the following secant equation in the update of ��:

��+1.� = Δ��, .� := ∇��
�(��, �̄�, �� + Δ��) −∇��

�(��, �̄�, ��).

Imposing to the step multiplier 3 to satisfy the second Wolfe’s condition

Δ��
⊤∇��

�(��, �̄�, �� + 3Δ��) ≥ �2Δ��
⊤∇��

�(��, �̄�, ��) with �2 ∈ [0, 1],

implies the necessary curvature condition

.�
⊤Δ�� > 0. (5.14)

A simpler procedure could skip the update whenever (5.14) does not hold by either
setting ��+1 to identity or to the last iterate ��. Provided (5.14) holds, we use

��+1 = (� − 4�Δ��.�
⊤)��(� − 4�.�Δ��

⊤) + 4�Δ��Δ��
⊤ with 4� =

1

.�
⊤Δ��

.

5.5. Alternating approach

Each BFGS update of �� needs to make a pure design step (step with fixed
primal and dual variables) in order to compute the coefficient .�. The approach
presented here aims to achieve minimization of �� using alternating between pure
design and pure feasibility steps. For several applications, design corrections may
be costly evaluated especially where each design update implies a modification of
the geometry which requires to remesh and update the data structure (see [22, 27].
Thus it could be more convenient to perform only significant design corrections.
If the suggested change in the design variable � is small, we directly improve
feasibility, leaving � unchanged. Actually, we perform a design correction only if

Δ�⊤∇��
� < 0 and ) Δ�⊤∇��

� < Δ�⊤∇��
� + Δ�̄⊤∇�̄�

�, (5.15)

where ) ∈]0, 1] is a percent which may be fixed by the user. We suppose there
exists �̄ such that for all iteration � we have

�(�, �̄, �) ≤ �� ≤ �̄ for all (�, �̄, �) ∈ �0, (5.16)

where �0 is a level set of ��. And thus ∥��∥ is finite for all iterations. An algorithm
realizing this approach is presented in details in [20, Section 4].

5.6. Line search procedures

With the preconditioner � derived in (5.13), we expect full step convergence near
a local minimizer of ��. To enforce convergence in the earlier stage of iterations,
we briefly sketch two backtracking line search procedures based on two slightly dif-
ferent quadratic forms: The first one consists in applying a standard backtracking
line search on a quadratic interpolation - of �� (see [1, 5]):

-(3) = 523
2 + 513 + 50 for 3 ∈ [0, 3�],
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where

50 = ��(��, �̄�, ��), 51 = ∇��(��, �̄�, ��)⊤#� < 0,

52 =
1

3�2
(��(�� + 3�Δ��, �̄� + 3�Δ�̄�, �� + 3�Δ��) − 513� − 50) .

Here, 51 < 0 is implied by the fact that the increment vector yields descent on ��.
The second procedure does not require the computation of ∇�� which may

save calculation cost. Linear interpolations *,+ of the primal and dual residuals,
respectively, and a standard parabolic interpolation 1 based on the initial descent
and two function values for the unpenalized Lagrangian lead to the approximation

-̃(3) =
�

2
∥* (3)∥22 +

�

2
∥+(3)∥22 + 1(3), 3 ∈ [0, 3�],

of ��. Here 3� is a tentative step size. If 3∗ denotes the (explicitly computable)

stationary point of -̃ multiplied by the sign of its second-order term, we accept
3� only if 3∗ ≥ 2

33� which ensures -̃(3�) < -̃(0) and thus

��(�� + 3�Δ��, �̄� + 3�Δ�̄�, �� + 3�Δ��) < ��(��, �̄�, ��).

As long as 3∗ ≥ 2
33� is violated, we set

3� = sign(3∗) max{0.2∣3�∣,min{0.8∣3�∣, ∣3∗∣}}
and recompute 3∗. For the acceptance of the initial step multiplier 3� = 1, we also
require 3∗ ≤ 4

33�. Failing this, 3� is once increased to 3� = 3∗ and then always

reduced until the main condition 3∗ ≥ 2
33� is fulfilled. In both cases, �∗

��
≥ 2

3 is

fulfilled after a finite number of steps and the line search procedure terminates.

6. Global convergence

If the assumptions of Theorem 4.5 apply and the line search ensures a monotonic
decrease of ��, all iterates during the optimization lie in the bounded level set

�0 := {(�, �̄, �) : ��(�, �̄, �) ≤ ��(�0, �̄0, �0)}.
We can show that the search directions # are gradient related:

Proposition 6.1. If Theorem 4.5 applies and ��� ર 0, then there exists � > 0 with

cos 6 = − #⊤∇��

∥∇��∥∥#∥ ≥ � > 0 for all (�, �̄, �) ∈ �0,

where the step # is computed with the preconditioner � introduced in (5.13).

Proof. See [20, Proposition 5.1]. □

The alternating approach does not affect the above result. Actually, we em-
ploy a pure design step only if (5.15) holds and thus

−Δ�⊤∇��
�

∥∇��∥∥Δ�∥ ≥ 1

(1 + ))

−#⊤∇��

∥∇��∥∥#∥ .
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We use a pure feasibility step if ) Δ�⊤∇��
� ≥ Δ�⊤∇��

�+Δ�̄⊤∇�̄�
� which gives

−(Δ�⊤∇��
� + Δ�̄⊤∇�̄�

�) ≥ − )

(1 + ))
#⊤∇��.

In addition, since Theorem 4.5 applies all level sets of the continuous function ��

are bounded which implies that �� is bounded below. Therefore, using the well-
known effectiveness of the line search procedure based on a standard backtracking
[1] and the gradient relatedness result established in Proposition 6.1, we obtain

lim
�→∞

∥∇��(��, �̄�, ��)∥ = 0.

7. Numerical experiment: The Bratu problem

The Bratu problem is frequently used in combustion modeling:

Δ�(&) + 7�(�) = 0 & = (&1, &2) ∈ [0, 1]2

�(0, &2) = �(1, &2) &2 ∈ [0, 1]
�(&1, 0) = sin(28&1) &1 ∈ [0, 1]
�(&1, 1) = �(&1) &1 ∈ [0, 1].

The function � is a boundary control that can be varied to minimize the objective

�(�, �) =

∫ 1

0

(∂�2�(&1, 1) − 4 − cos(28&1))
2
9&1 + /

∫ 1

0

(
�2 + �′2) 9&.

We use / = 0.001, an initial control is �(&1) = 2.2 (see [17]), a five point central
difference scheme with ℎ = 1/10, and Jacobi’s method.

To solve the minimization problem, we use power iterations to compute the
spectral radius ���� of the matrix ��� and ��∗

�
of 
⊤

� 
�. Then, we update � =

���� and � = √��∗
�
. We update the ratio 1 introduced in (5.10) from

1� = max{1�−1,
∥��(��, �̄�, �� + Δ��) −��(��, �̄�, ��)∥22

∥
(��, �� + Δ��) −
(��, ��)∥22
},

and used �, �, / as in (5.11), (5.8). We compared the number of iterations �opt

needed for the optimization with the alternating approach, i.e., to reach

�∥
(��, ��) − ��∥22 + �∥��(��, �̄�, ��) − �̄�∥22 + ∥Δ��∥22 ≤ � := 10−4,

and the number of iterations �� required to reach feasibility with fixed �:

∥
(��, �) − ��∥22 + ∥��(��, �̄�, �) − �̄�∥22 ≤ �,

We used a mesh size ℎ ∈ [0.055, 0.125]. The behaviors with respect to ℎ
of �opt, �� and of the ratio . = �opt/�� are depicted in Figure 1. It shows
that the number of iterations �opt needed to solve the optimization problem is
always bounded by a reasonable factor (here 4.6 at maximum) times the number
of iterations �� required to reach feasibility: bounded retardation. Although both
numbers grow while decreasing ℎ, the ratio . = �opt/�� in Figure 2 seems reach-
ing some limit slightly bigger than 2 for small values of ℎ. In the case of ��, the
two line search procedures give results that are numerically indistinguishable.
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Figure 1. Iterations (left) and retardation factor w.r.t. mesh size ℎ

8. Application: Aerodynamic shape optimization

As a first realistic application, we consider shape optimization of a RAE2822 tran-
sonic airfoil whose aerodynamic properties are calculated by a structured Euler
solver with quasi-unsteady formulation based on pseudo time steps. The objective
is to reduce the inviscid shock that is present on the initial airfoil and therefore to
minimize the drag. The adjoint solver which calculates the necessary sensitivities
for the optimization is based on discrete adjoints and derived by using reverse
mode of automatic differentiation. A detailed information about the presented
work can be found in [29].

8.1. Governing equations and boundary conditions

Since we are interested in drag reduction in transonic flow regime, the compressible
Euler equations are an appropriate choice. They are capable of describing the
(inviscid) shocks, which are the main sources of the pressure drag.

Even though the flow steady, the solution is obtained by integrating the
(quasi-)unsteady Euler equations in time until a steady state is reached. These
time steps do not have any physical meaning and are called pseudo-time steps.

For 2D flow, the compressible Euler equations in Cartesian coordinates read:

∂;

∂$
+

∂�

∂&
+

∂<

∂�
= 0 with � =

⎡

⎢
⎢
⎣

��
��2 + =
��,
���

⎤

⎥
⎥
⎦ and < =

⎡

⎢
⎢
⎣

�,
�,�
�,2 + =
�,�

⎤

⎥
⎥
⎦ , (8.1)

where ; is the vector of conserved variables {�, ��, �,, �>} (� is the density, �
and , are the velocity components and > denotes the energy).
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As boundary conditions, we assume the Euler slip condition on the wall
(�⃗� ,⃗ = 0) and free stream conditions at the farfield. For a perfect gas holds

= = (6 − 1)�(> − 1

2
(�2 + ,2)) (8.2)

�� = �> + = (8.3)

for pressure = and enthalpy � . The pressure and drag coefficients are defined as

�	 :=
2(=− =∞)

6"2∞=∞
, �
 :=

1

����

∫

�

�	(�� cos� + �� cos�)9@ . (8.4)

8.2. Shape parameterization

In aerodynamic shape optimization, there are mainly two ways of doing the shape
updates: Either parameterizing the shape itself or parameterizing shape deforma-
tions. In [27] these possibilities are investigated in detail. In the following, we take
the second approach, such that an initial airfoil shape is deformed by some set
of basis functions that are scaled by certain design parameters. Here, the basic
idea of shape deformation is to evaluate these basis functions scaled with certain
design parameters and to deform the camberline of the airfoil accordingly. Then,
the new shape is simply obtained by using the deformed camberline and the ini-
tial thickness distribution. The result is a surface deformation that maintains the
airfoil thickness.

We have chosen Hicks-Henne functions, which are widely used in airfoil op-
timization. These function have the positive property that they are defined in the
interval [0, 1] with a peak position at A and they are analytically smooth at zero
and one. The normalized airfoil shape is deformed by using Hicks-Henne functions
multiplied by the design parameters ��:

Δ camber(&) =
∑

��ℎ {A, (} (&) and camber(&)+ = Δ camber(&) . (8.5)

After deforming the airfoil geometry, a difference vector is calculated and
finally performs a mesh deformation by using this difference vector. This approach
is also very advantageous in terms of gradient computations, since we have to
differentiate only the simple structured mesh and shape deformation tools, instead
of complex mesh generators.

The numerical solution of (8.1) is computed by the TAUij code, which is a
structured quasi 2D version of the TAU code, developed at the German Aerospace
Center (DLR). For the spatial discretization the MAPS+ [31] scheme is used.
For the pseudo time stepping, a fourth-order Runge-Kutta scheme is applied. To
accelerate the convergence, local time stepping, explicit residual smoothing and
a multigrid methods are used. The code TAUij is written in C and comprises
approximately 6000 lines of code distributed over several files.

8.3. Gradient computation and implementation issues

One of the key points in aerodynamic shape optimization with gradient-based
methods is the computation of the derivatives. For this study, we generate the
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adjoint codes in a semi-automatic fashion by using reverse mode of automatic
differentiation. The reverse mode of AD allows to generate discrete adjoint codes in
which computational cost is independent from number of optimization parameters.
The freeware AD tool ADOL-C [15] gives the possibility of applying reverse AD.
Since ADOL-C is based on operator overloading strategy, for the reverse mode it
is usually necessary to tape all operations that are done on the active variables
(the variables which are to differentiate with respect to the selected independent
parameters) on memory or disk. Because in our case the primal iteration is a fixed-
point iteration, a complete taping of the primal iteration is not necessary. Since
we use a one-shot approach rather than a hierarchical approach, we need to tape
only one pseudo-time step in each iteration instead of the whole time-stepping.
This is of course very advantageous, since the tape sizes would be extremely large,
even for the case of rather coarse meshes, because the tape size of a primal iterate
would be multiplied by the number of pseudo-time steps. Nevertheless, in [32] it
is demonstrated how to overcome this kind of drawbacks in cases of hierarchical
approaches by the so-called reverse accumulation of adjoints [3].

For the coupled iteration, we need to evaluate several derivative vectors

∇��
� = �Δ��
� + �Δ����� + �� , (8.6)

in order to update the design vectors �. Furthermore, we need to evaluate the
terms �� for the update of the adjoint states �.

Note, that all expressions in (8.6) are either vectors or matrix vector products.
Several subroutines of ADOL-C allow us to calculate these matrix vector products
easily by using the reverse mode of AD for the first-order terms and reverse on
tangent for the second-order term.

For the differentiation, we simply set the independent vector as [�; �], the
dependent vector as [� ; �] and correspondingly calculate � inside the routine
that returns the goal functional �
. It should also be mentioned that, apart from
��, the derivatives with respect to the design parameters � are propagated within
the design chain in the reverse order as vector matrix products. In addition to
the flow solver, the other programs of the design chain, namely meshdefo, difgeo,
defgeo, have to be differentiated, too. In [10], this reverse propagation of the adjoint
vectors is covered in detail, and comparisons of the resulting adjoint sensitivities
versus finite differences are also illustrated.

8.4. Numerical results

The numerical tests are done on the transonic shape optimization problem of a
RAE2822 airfoil that is introduced previously. The number of Hicks-Henne func-
tions for the shape parameterization are chosen to be 20. The single-step one-shot
method is applied in the sense that full steps are taken in the design update. As a
stopping criteria, we choose ∣Δ�∣ < B, where B is a user defined tolerance. For our
particular application we have chosen B = 0.0001.

As flow conditions, we have an inflow Mach number of "∞ = 0.73 and an
angle of attack of � = 2∘. Within the first 30 iterations, in order to smooth out
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Figure 2. Optimization history

possible oscillatory effects, caused by the initialization of the flow field, we do only
updates of the state and the adjoint state, without changes of the airfoil geometry.
After these smoothing iterations, we do one-shot iterations. Figure 2 shows the
optimization histories of the augmented Lagrangian, the cost functional �
, the
primal as well as the adjoint state residual. We observe, that after approximately
1600 iterations, the coupled iteration converges and the drag coefficient is reduced
drastically. Consequently, we just measure a deterioration factor of 4 from the
simulation to the one-shot optimization.

9. Application: Parameter optimization in a climate model

Here we present a second real-world example, this time from climate modeling,
which is in detail described in [25, 26]. Parameter optimization is an important
task in all kind of climate models. Many processes are not well known, some are
too small-scaled in time or space, and others are just beyond the scope of the
model. Here, parameters of a simplified model of the north Atlantic thermohaline
circulation (THC) are optimized to fit the results to data given by a more detailed
climate model of intermediate complexity.

The 4-box model of the Atlantic THC described in [34] simulates the flow rate
of the Atlantic Ocean known as the ‘conveyor belt’, carrying heat northward and
having a significant impact on climate in northwestern Europe. Temperatures C�
and salinity differences D� in four different boxes, namely the southern, northern,
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Figure 3. Rahmstorf box model, flow direction shown for 	 > 0.

tropical and the deep Atlantic, are the characteristics inducing the flow rate. The
surface boxes exchange heat and freshwater with the atmosphere, which causes a
pressure-driven circulation, compare Figure 3.

In [33] a smooth coupling of the two possible flow directions is proposed. The
resulting ODE system, e.g., for boxes F = 1, 2, reads:

Ċ1 = !1(C ∗
1 − C1) +

	+

G1
(C4 − C1) +

	−

G1
(C3 − C1)

Ċ2 = !2(C ∗
2 − C2) +

	+

G2
(C3 − C2) +

	−

G2
(C4 − C2)

Ḋ1 =
D0�1
G 1

+
	+

G1
(D4 − D1) +

	−

G1
(D3 − D1)

Ḋ2 = −D0�2
G2

+
	+

G2
(D3 − D2) +

	−

G2
(D4 − D2).

Here 	 = �(�(D2 − D1) − �(C2 − C1)) is the meridional volume transport or
overturning. For boxes F = 3, 4 there are similar, also coupled equations. Several
model parameters are involved, the most important being the freshwater flux �1
containing atmospheric water vapor transport and wind-driven oceanic transport;
they are used to simulate global warming in the model. The parameter A in 	+ :=

�
1−�−�� ,	− := −�

1−��� allows to use the model for both flow directions.

9.1. The optimization problem

Given fresh water fluxes (�1,�)
�
�=1 (with � = 68 here), the aim is to fit the values

	� = 	(�1,�) obtained by the model to data 	
,� from a more complex model
Climber 2, see [30], while � = (C ∗

1 , C
∗
2 , C

∗
3 ,Γ, �, �) are the control parameters. If

E (�, �) denotes the right-hand side of the ODE system of the model, we get

min
�,�

 (�, �) :=
1

2
∥	−	
∥22 +

��
2

∥�− �0∥22, 	 = (	�)
�
�=1,	
 = (	
,�)

�
�=1,

s.t. �̇(�1,�) = E (�(�1,�), �), F = 1, . . . , �.
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The regularization term incorporates a prior guess �0 for the parameters. The
ODE system is solved by an explicit Euler method, thus 
 defined in Section 1.1
here represents one Euler step, but operating on all parameters �1� together, i.e.,
for fixed � we have 
(⋅, �) : ℝ8� → ℝ

8�. Contractivity of 
 is not given in general,
i.e., � in (1.2) exceeds 1 for several steps, but in average is less than 1. Also the
assumption ∂�/∂� being always invertible is violated. Nevertheless, in practice 

converges for fixed � but different starting values �0 to the same stationary �∗.
About 400 to 11, 000 steps are needed to reach ∥��+1−��∥ < � = 10−6 for iteration
index �.

9.2. One-shot method for the box model

We calculate the preconditioner � defined in (5.13) in every iteration including all
first- and second-order derivatives. To compute �, � and /, we set the (iteration-
dependent) contraction factor of the Euler time stepping to � = 0.9. We determine
∥
�∥2 and ∥���∥2 computing the Eigenvalues of 
⊤

�
�, �
⊤
����� ∈ ℝ

6×6 directly,

whereas for those of �⊤
����� we apply a power iteration.

The forward mode of TAF [12] is used for 
�, the reverse mode for �̄⊤
�, and
for �̄⊤
�� and �̄⊤
�� first the reverse and then the forward mode is applied. With
only 6 parameters in our optimization problem, the reverse mode is only slightly
cheaper than the forward mode for this example, and therefore is not mandatory.

For the calculation of necessary matrix-vector products (i.e., directional der-
ivatives) we determine �̄⊤
��(, ( ∈ ℝ

8�, with a TAF generated subroutine and
 ��( by hand. A second call of the TAF subroutine computes �⊤

�����( = ( �� +

�̄⊤
��)⊤���(. In our testings, the dominant part of �⊤
����� is the constant matrix

 ⊤
�� �� and thus ∥���∥2 does not change significantly from iteration to iteration.

As one can see in table 1, an update performed only after several time-steps does
not significantly influence the optimization. In our calculations � becomes very

update of ��� #iterations time (min)  (�∗, �∗) data fit

every 10000 iterations 1,037,804 6.174 14.879 14.053
every 1000 iterations 1,010,011 6.148 14.879 14.053
every iteration 1,015,563 10.394 14.879 14.053

Table 1. Effect on the optimization of rare update of ���, �� = 0.1.

small (≈ 10−5) whereas � is large (≈ 105). Since �⊤
����� contains quite large

values and 
⊤
�
� only small ones, we assume that �, � are well chosen.

9.3. Comparison between BFGS and One-shot strategy, bounded retardation

We compared the One-shot approach with a standard BFGS method. For the
latter, in each iteration the model has to be run into a steady state for all �1,�.

Without any regularization, the One-shot method does not converge, and
BFGS finds optimal values �∗ with ∂ 

∂� (�∗) = 0 being far away from reality. Gen-
erally, the smaller �� the better the fit of the data becomes. The optimization
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�� = 10 �� = 0.1 �� = 0.001

One-shot BFGS One-shot BFGS One-shot BFGS

�(�∗, �∗) 25.854 26.221 14.879 15.926 12.748 11.411
data fit 0.269 0.277 0.206 0.213 0.183 0.166
# iterations 1,269,019 20 1,010,011 28 10,678,000 65
# Euler steps 1,269,019 1,285,203 1,010,011 1,808,823 10,678,000 4,236,481

Table 2. Results of the optimization

results by both methods differ only slightly, see Table 2. The total number of
needed time steps for the One-shot method was smaller compared to BFGS for
�� ≥ 0.1. Concerning computational time, the BFGS method is a little bit faster
(since the Euler steps are cheaper due to the smaller system size), and only in the
case where �� = 0.001 even significantly with a relation of 1 : 5.5.

The most promising point of this study is that the One-shot strategy is much
faster close to the optimal pair (�∗, �∗) than the BFGS method, which is actually
the motivation for the One-shot approach, and one could save iterations mitigating
the stopping criterion. We refer to [26] for details.

Finally we remark that it is typical in climate models that less theoretical
analysis can be provided because of the complexity of real world models. For the
optimization strategy, its quality and usefulness is even more convincing if good
results are achieved even though convergence assumptions are not fulfilled.
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