REACHABILITY AND MINIMAL TIMES FOR STATE CONSTRAINED NONLINEAR PROBLEMS WITHOUT ANY CONTROLLABILITY ASSUMPTION

OLIVIER BOKANOWSKI*, NICOLAS FORCADEL†, AND HASNAA ZIDANI‡

Abstract. We consider a target problem for a nonlinear system under state constraints. We give a new continuous level-set approach for characterizing the optimal times and the backward-reachability sets. This approach leads to a characterization via a Hamilton-Jacobi equation, without assuming any controllability assumption. We also treat the case of time-dependent state constraints, as well as a target problem for a two-player game with state constraints. Our method gives a good framework for numerical approximations, and some numerical illustrations are included in the paper.

Key words. Minimal time problem, Hamilton-Jacobi-Bellman equations, Level set method, Reachability set (Attainable set), State constraints, Two-players game.

AMS subject classifications. 93B03, 49J15, 35A18, 65N15, 49Lxx

1. Introduction. This paper studies a simple way to characterize the reachable sets and the optimal time to reach a target for a controlled nonlinear system where the state is constrained to stay in a given domain. We are mainly interested in the case where no “controllability” assumption is made.

More precisely, we consider a control system:

\[\dot{y}(s) = f(y(s), \alpha(s)), \quad \text{for a.e. } s \geq 0, \quad y(0) = x, \]

where \(\alpha : (0, +\infty) \to A \) is a measurable function, \(A \) is a given compact set in \(\mathbb{R}^m \) (set of admissible controls), and the dynamics \(f : \mathbb{R}^d \times A \to \mathbb{R}^d \). In all the sequel, for any initial position \(x \), we denote by \(y_{\alpha,x} \) the solution of (1.1) associated to the control variable \(\alpha \).

Let \(K \subset \mathbb{R}^d \) be a closed set of state constraints and let \(C \subset K \) be a closed target. For a given time \(t \geq 0 \), we consider the capture basin (backward reachable set) defined by:

\[\text{Cap}_C(t) := \{ x \in \mathbb{R}^d, \exists \alpha : (0, t) \to A \text{ measurable, } y_{\alpha,x}^\nu(t) \in C \text{ and } y_{\alpha,x}^\nu(\theta) \in K \forall \theta \in [0, t] \} \]

where \(\nu : \mathbb{R}^d \to \mathbb{R} \) is a Lipschitz continuous function defined by:

\[\nu_0(x) \leq 0 \iff x \in C, \]

and consider the control problem:

\[u(x,t) := \inf \{ \nu(x) \mid \alpha \in L^\infty((0,t); A), \; y_{\alpha,x}^\nu(\theta) \in K, \; \forall \theta \in [0,t] \}. \]

Then it is not difficult to prove that

\[\text{Cap}_C(t) = \{ x \in \mathbb{R}^d, u(x,t) \leq 0 \}. \]

For the unconstrained case, several works have been devoted to the characterization of the value function \(u \) as a continuous viscosity solution of a Hamilton-Jacobi equation (see...
[25, 19, 4, 2] and references therein). In presence of state constraints, the continuity of this value function is no longer satisfied, unless the dynamics satisfy a special controllability assumption on the boundary of the state constraints. This assumption called “inward pointing qualification condition (IQ)” was first introduced by Soner in [34]. It asks that at each point of K there exists a field of the system pointing inward K. Clearly this condition ensures the viability of K (from any initial condition in K, there exists an admissible trajectory which could stay for ever in K). Under this assumption, the value function u is the unique constrained viscosity solution of a HJB equation with a suitable new boundary condition [33, 34, 22, 12, 29].

Unfortunately, in many control problems, the condition (IQ) is not satisfied and the value function u could be discontinuous. In this framework, Frankowska introduced in [20] another controllability assumption, called “outward pointing condition (OQ)”. Under this assumption it is still possible to characterize the value function as the unique lower semi-continuous (for short lsc) solution of an HJB equation.

In absence of any assumption of controllability, the function u is discontinuous and its characterization becomes more complicated, see for instance [6, 36, 11] and the references therein. In [13], the authors proved that the minimal time function for a state constrained control problem, without any controllability assumption, is the smallest non-negative lsc supersolution of an HJB equation. This characterization leads to a numerical algorithm based on the viability approach [14, 32].

In this paper, we are interested in the case where no controllability assumption is assumed. We show that it is possible to characterize the capture basin Cap_C by means of a control problem whose value function is continuous (even Lipschitz continuous). For that, we consider a continuous function $g : \mathbb{R}^d \rightarrow \mathbb{R}$ such that
\begin{equation}
g(x) \leq 0 \iff x \in K. \tag{1.5}
\end{equation}
Then we consider the new control problem:
\begin{equation}
\vartheta(x, t) := \inf \{ \max(\vartheta_0(y_x^a(t)), \max_{\theta \in [0, t]} g(y_x^a(\theta))) \mid a \in L^\infty((0, t); \mathcal{A}) \}. \tag{1.6}
\end{equation}
We prove that the value function ϑ is the unique continuous viscosity solution of the equation:
\begin{align}
\min \left(\partial_t \vartheta(x, t) + H(x, D_x \vartheta(x, t)), \vartheta(x, t) - g(x) \right) &= 0 \quad \text{for } t \in [0, +\infty[, \ x \in \mathbb{R}^d, \tag{1.7a} \\
\vartheta(x, 0) &= \max(\vartheta_0(x), g(x)). \tag{1.7b}
\end{align}
Moreover, the capture basin is given by $\text{Cap}_C(t) = \{ x \in \mathbb{R}^d \mid \vartheta(x, t) \leq 0 \}$, and the minimal time for a given $x \in \mathbb{R}^d$ to reach the target while remaining in the set of state constraints is obtained by: $T(x) = \inf \{ t \in [0, +\infty[\mid \vartheta(x, t) \leq 0 \}$. This continuous setting opens a large class of numerical schemes to be used for such problems (such as Semi-Lagrangian or finite differences schemes).

Several papers in the literature deal with the link between reachability and HJB equations. In the case when $K = \mathbb{R}^d$, we refer to [28], [27] and the references therein. The case when K is an open set in \mathbb{R}^d is investigated in [26]. In the case of constrained reachability problem (with closed set K), a similar idea of introducing a control problem in the form of (1.6) is also introduced in [24]. However, in that paper, the analysis is a little bit more complicated and did not lead to a simple PDE for characterizing ϑ (the obstacle function is also assumed convex in [24]). Let us also refer to [23] for a short discussion linking the

\footnote{By using the continuity of g we will also have $g(x) = 0$ if $x \in \partial K$.}
reachability sets under state constraints to HJB equations. The treatment in this reference assumed a C^1 value function (see also section 2.1).

Finally, let us mention that control problems with maximum costs have already been studied by Barron and coauthors [9, 8], and also by Quincampoix and Serea [31] from a viability point of view. The main feature of our paper is the use of (1.6) to deal easily with minimal time problems with state constraints, and to determine the corresponding capture basins. This idea generalises in some sense the known level-set approach usually used for unconstrained problems.

The paper is organized as follows. In Section 2, we introduce the problem and give the main results. In this section we precise also the assumptions and fix the notations that will be used in the sequel. The proof of the main results are given in Section 3. We then give some extensions of the previous results. In Section 4, we shall discuss the case of time-dependent state constraints of the form

$$y^\alpha_x(\theta) \in K_\theta, \quad \forall \theta \in [0, t],$$

where the sets $(K_\theta)_{\theta \geq 0}$ can evolve in time (assuming some regularity of the map $\theta \mapsto K_\theta$). The case of two-player games with state constraints will be also discussed in the appendix. Numerical approximation is studied in Section 5, and an error estimate is derived. Finally, we give some numerical illustrations in Section 6.

Notations. Throughout the paper $| \cdot |$ is a given norm on \mathbb{R}^d (for $d \geq 1$). For any closed set $K \subset \mathbb{R}^d$ and any $x \in K$, we denote by $d(x, K)$ the distance from x to K: $d(x, K) := \inf\{|x - y|, \ y \in K\}$. We shall also denote by $d_K(x)$ the signed distance function to K, i.e., with $d_K(x) := d(x, K) \geq 0$ for $x \notin K$, and $d_K(x) := -d(x, \mathbb{R}^d \setminus K) < 0$ for $x \in K$.

2. Main results. Let \mathcal{A} be a nonempty compact set in \mathbb{R}^m, for $m \geq 1$. We consider function $f \in C(\mathbb{R}^d \times \mathcal{A}; \mathbb{R}^d)$ satisfying the following assumptions:

- (H1) there exists $L_f > 0$, such that for every $(x, x', a) \in \mathbb{R}^d \times \mathbb{R}^d \times \mathcal{A}$,
 $$|f(x, a) - f(x', a)| \leq L_f |x - x'|, \quad |f(x, a)| \leq L_f.$$

- (H2) For every $y \in \mathbb{R}^d$, $f(y, \mathcal{A})$ is a convex set of \mathbb{R}^d.

Assumption (H2) is not needed in all the paper, it will be used to define closed reachable sets (see Remark 1). Throughout the paper, we will indicate when this assumption can be dropped out. Also, the boundedness of f can be weakened, and only a linear growth property “$|f(x, a)| \leq L_f (1 + |x|)$” is needed.

Let C be a nonempty closed set of \mathbb{R}^d (the “target”), and let also K be a nonempty closed set (of “state constraints”). Let us also denote \mathcal{A}_{ad} the set of measurable functions on $(0, +\infty)$ and taking their values in \mathcal{A}: $\mathcal{A}_{ad} := \{\alpha : (0, +\infty) \rightarrow \mathbb{R}^m \text{ measurable}, \alpha(t) \in \mathcal{A} \ a.e\}$.

Now, for $t \geq 0$, we define the capture basin as the set of all initial points x from which starts a trajectory $y^\alpha_x(\cdot)$ solution of (1.1), associated to an admissible control $\alpha \in \mathcal{A}_{ad}$, and such that $y^\alpha_x(t) \in C$ while $y^\alpha_x(\theta)$ belongs to the set of constraints K, for every $\theta \in [0, t]$:

$$\text{Cap}_C(t) := \left\{ x \in \mathbb{R}^d, \ \exists \alpha \in \mathcal{A}_{ad}, \ y^\alpha_x(t) \in C \text{ and } y^\alpha_x(\theta) \in K \forall \theta \in [0, t] \right\}.$$

In this problem, the trajectory should belongs to the (fixed) set of state-constraints K.

Remark 1. Under (H2), for every $t \geq 0$, the capture basin $\text{Cap}_C(t)$ is a closed set.

In all the sequel, we will use the following definition of admissible trajectory.
Definition 2.1. Let t be a fixed positive time. We will say that a solution of (1.1) y^*_x is admissible on $[0,t]$, if it is associated to an admissible control $\alpha \in \mathcal{A}_{ad}$ and $y^*_x(\theta) \in \mathcal{C}$ for every $\theta \in [0,t]$.

Remark 2. For every $t \geq 0$, the set $\text{Cap}_C(t)$ contains the initial positions which can be steered to the target (exactly) at time t. Of course, we can also define the "backward reachable set", which is the set of points from which one can reach the target C before time t:

$$\mathcal{R}([0,t]) := \left\{ x \in \mathbb{R}^d, \exists \tau \in [0,t], \exists \alpha \in \mathcal{A}_{ad}, y^*_x(\tau) \in \mathcal{C} \right\}.$$

$(\mathcal{R}([0,t]))_{t \geq 0}$ is a family of increasing closed sets, with $\mathcal{R}([0,0]) = \mathcal{C}$. If we consider the new dynamics $F: \mathbb{R}^d \times \tilde{A} \to \mathbb{R}^d$ by $F(x,(\alpha,\beta)) := \beta f(x,\alpha)$ for $(\alpha,\beta) \in \tilde{A} = \mathcal{A} \times [0,1]$, then we can remark that $\mathcal{R}([0,t])$ is exactly the capture basin associated to the dynamics F (see for instance [28]).

In this paper, we propose to use the level set approach in order to characterize $\text{Cap}_C(t)$ as the negative region of a continuous function ϑ, i.e., we look for a continuous function such that $\text{Cap}_C(t) = \{x, \vartheta(x,t) \leq 0\}$.

To do so, we first consider a Lipschitz continuous function $\vartheta_0 : \mathbb{R}^d \to \mathbb{R}$ such that

$$\vartheta_0(x) \leq 0 \iff x \in \mathcal{C}. \quad (2.1)$$

For instance we may choose $\vartheta_0(x) := d_C(x)$, then ϑ_0 is Lipschitz continuous (see for instance [17]). In particular, we have $\text{Cap}_C(0) = \mathcal{C} = \{x, \vartheta_0(x) \leq 0\}$.

Consider the value function u associated to the Mayer problem with final cost ϑ_0:

$$u(x,t) := \inf \{ \vartheta_0(y^*_x(t)), \alpha \in \mathcal{A}_{ad}, y^*_x(\theta) \in \mathcal{C}, \forall \theta \in [0,t] \}. \quad (2.2)$$

It is well known that the capture basin is characterized by

$$\text{Cap}_C(t) = \{x, u(x,t) \leq 0\}.$$

However, function u is a value function of a state-constrained problem, and we are still faced to the problem of characterizing this value function if no controllability assumption is made. To overcome this difficulty, we consider another Lipschitz continuous function $g : \mathbb{R}^d \to \mathbb{R}$ such that

$$g(x) \leq 0 \iff x \in \mathcal{K}. \quad (2.3)$$

Note that such a function always exists since we can choose $g(x) := d_K(x)$.

We then consider the control problem:

$$\vartheta(x,t) := \inf \left\{ \max \left(\vartheta_0(y^*_x(t)), \max_{\theta \in [0,t]} g(y^*_x(\theta)) \right), \alpha \in \mathcal{A}_{ad} \right\}. \quad (2.4)$$

Problem (2.4) has no "explicit" state constraint. In fact, in this new setting, the term $\max_{\theta \in [0,t]} g(y^*_x(\theta))$ plays a role of a penalization that a trajectory y^*_x would pay if it violates the state-constraints. We will see in Theorem 2, that the advantage of considering (2.4) is that ϑ can be now characterized as the unique continuous solution of an HJB equation.

The central idea of the paper is that the function $\vartheta(\cdot,t)$ and $u(\cdot,t)$ have same negative regions and so we have the following characterization of the capture basin:

Theorem 1 (Characterization of the capture basin). Assume (H1)-(H2). Let ϑ_0 and g be Lipschitz continuous functions defined respectively by (2.1) and (2.3). Let u and ϑ the value functions defined respectively by (2.2) and (2.4). Then, for every $t \geq 0$, we have:
(i) the capture basin is given by
\[
\text{Cap}_C(t) = \{ x, \ u(x,t) \leq 0 \} = \{ x, \ \vartheta(x,t) \leq 0 \}.
\]

(ii) if \(\vartheta(x,t) < 0 \) and \(\bar{K} = \{ x, \ g(x) < 0 \} \), then \(u(x,t) < 0 \), and there exists, on \([0,t]\), an admissible trajectory \(y^a \) that never touches the boundary \(\partial K \).

Remark 3. Let us point out that the zero level sets of \(u \) and \(\vartheta \) may not coincide. In particular, when there is an optimal trajectory \(y^a \) that touches the boundary \(\partial K \), we can have \(u(x,t) < 0 \) and \(\vartheta(x,t) = 0 \) (hence the converse of Theorem 1(ii) is false). This is illustrated in Example 1, Section 3.

Consider the minimal time function, which associates to any point \(x \in \mathbb{R}^d \), the minimal time needed to reach the target with an admissible trajectory \(y^a \) solution of (1.1) and satisfying \(y^a(\theta) \in K \):
\[
T(x) := \inf \{ t \geq 0, \ \exists \alpha \in L^\infty((0,t); \mathcal{A}), y^a(t) \in C \text{ and } y^a(\theta) \in K, \ \forall \theta \in [0,t] \}.
\]

Many works have been devoted to the regularity of the minimum time function \(T \). When \(K = \mathbb{R}^d \), and under some local metric properties around the target, the function \(T \) is the unique continuous viscosity solution of an HJB equation [2].

Here, without assuming any controllability assumption at the boundary of the target, neither at the boundary of \(K \), the function \(T \) may be discontinuous. Indeed, if, for \(x \in \mathbb{R}^d \), no trajectory \(y^a \) reaches the target \(C \) or if any trajectory leaves \(K \) before reaching the target, we set \(T(x) = +\infty \). Nevertheless, the next proposition states that \(T \) is lower semi-continuous and characterizes it by using the knowledge of the function \(\vartheta \).

Proposition 1. Assume (H1)-(H2). The minimal time function \(T : \mathbb{R}^d \rightarrow \mathbb{R}^+ \cup \{ +\infty \} \) is lsc. Moreover, we have:
\[
T(x) = \inf \{ t \geq 0, \ x \in \text{Cap}_C(t) \} = \inf \{ t \geq 0, \ \vartheta(x,t) \leq 0 \},
\]
with \(\vartheta \) the value function defined in (2.4), where \(\vartheta_0 \) and \(g \) are any Lipschitz functions satisfying respectively (2.1) and (2.3).

Remark 4. It is known that when (H2) does not hold, lower semi-continuity of \(T \) is no-longer true. In this case, it is possible to prove that \(T_* (x) = \inf \{ t \geq 0, \vartheta(x,t) \leq 0 \} \), where \(T_* \) is the lower semi-continuous envelope of \(T \).

Remark 5. The use of a level-set approach is a standard way to determine the minimal time function of unconstrained control problems [19].

In our work, we generalize this point of view to the case when the time control problem is in presence of state constraints. Our formulation allows also to obtain the capture basins.

As mentioned before, the function \(\vartheta \) can be characterized as the unique solution of a Hamilton-Jacobi equation. More precisely, considering the Hamiltonian
\[
H(x,p) := \max_{\alpha \in \mathcal{A}} (-f(x,\alpha) \cdot p),
\]
we have

Theorem 2. Assume (H1), and that \(\vartheta_0 \) and \(g \) are Lipschitz continuous. Then \(\vartheta \) is the unique continuous viscosity solution (see Definition 1, Section 3) of the variational inequality (obstacle problem)
\[
\begin{align}
\min(\partial_t \vartheta + H(x,\nabla \vartheta), \ \vartheta - g(x)) & = 0, \quad t > 0, \ x \in \mathbb{R}^d, \\
\vartheta(x,0) &= \max(\vartheta_0(x), g(x)), \quad x \in \mathbb{R}^d.
\end{align}
\]
Remark 6. In practice, since the target C is a subset of \mathcal{K}, it is always possible to choose θ_0 and g in such a way that $\theta_0 \geq g$.

Inequalities such as (2.7) appear also in the framework of exit time problems where the obstacle g represent the exit cost that should be paid for exit (see [5, 6, 7]). Here, g is a “fictitious cost” that a target would pay if it leaves \mathcal{K}.

Remark 7. From a theoretical point of view, the choice of g is not important, and g can be any Lipschitz function satisfying (2.3). Of course, the value function ϑ is dependent on g, while the set $\{x \in \mathbb{R}^d, \vartheta(x,t) \leq 0\}$ does not depend on g.

Let us also point out that the obstacle term in (2.7) comes from the presence of the sup-norm cost functions. In [23], the characterization of ϑ_1 is given under the assumption that ϑ_1 is very close to (2.11), but the initial conditions can be continuous viscosity solution to the following PDE:

$$\vartheta_0(x,t) := \inf \left\{ d(y^0_\vartheta(t), C) + \eta \int_0^t d(y^0_\vartheta(s), \mathcal{K}) \, ds \mid \alpha \in L^\infty((0,t); A) \right\}. \quad (2.8)$$

It is easy to prove that, for any $\eta > 0$ and any $t \geq 0$, the capture basin $\text{Cap}_C(t)$ is given by

$$\text{Cap}_C(t) = \{ x \in \mathbb{R}^m, \vartheta_0(x,t) \leq 0 \} = \{ x \in \mathbb{R}^m, \vartheta_0(x,t) = 0 \},$$

and ϑ_0 is the unique continuous viscosity solution of the following PDE

$$\partial_t \vartheta + H(x, D_x \vartheta) - \eta d(x, \mathcal{K}) = 0 \quad t > 0, \quad x \in \mathbb{R}^d, \quad (2.9a)$$

$$\vartheta(x,0) = d(x, C). \quad (2.9b)$$

In [23], the characterization of ϑ_1 (when $\eta = 1$) is given under the assumption that ϑ_1 is very smooth. However, it is possible to derive equation (2.9) by using standard arguments of the viscosity framework, for any $\eta > 0$. The drawback of approach (2.9) is that for every $t \geq 0$, $\vartheta_1(\cdot,t)$ is nonsmooth in the neighborhood of the capture basin. In Section 6, we will compare this approach (for several choices of η) to our method based on (2.7).

Approach 2. It consists on a classical idea of penalizing the state-constrained control problem (2.2). Thus, for every $\epsilon > 0$, we consider for $t \geq 0$ and $x \in \mathbb{R}^d$ the problem:

$$u^\epsilon(x,t) := \inf \left\{ d_0(y^\epsilon_\vartheta(t)) + \int_0^t \frac{1}{\epsilon} d(y^\epsilon_\vartheta(s), \mathcal{K}) \, ds \mid \alpha \in L^\infty((0,t); A) \right\}. \quad (2.10)$$

When ϵ tends to 0, $u^\epsilon(x,t)$ converges locally uniformly to $u(x,t)$. Moreover, u^ϵ is the unique continuous viscosity solution to the following PDE:

$$\partial_t v + H(x, D_x v) - \frac{1}{\epsilon} d(x, \mathcal{K}) = 0 \quad t > 0, \quad x \in \mathbb{R}^d, \quad (2.11a)$$

$$v(x,0) = d_0(x). \quad (2.11b)$$

We point out that equation (2.9) is very close to (2.11), but the initial conditions can be different. Indeed, in (2.11), d_0 can be chosen smoother than $d(\cdot, \mathcal{K})$. While, for any $\eta > 0$, equation (2.9) gives an exact characterization to the capture basin sets, the functions u^ϵ
give only “an approximation” to these sets. Moreover, it is not clear how to choose the parameter ϵ in order to obtain a good approximation (see Section 6).

Approach 3. An other formal way consists on considering that the dynamics vanishes on the obstacle. The capture basin at time t is (formally) identified to the set $\{\bar{u}(x,t) \leq 0\}$, where \bar{u} solves the HJB equation

$$u_t + \max_{\alpha}(-f(x,\alpha)1_K(x) \cdot \nabla u) = 0 \quad t > 0, \ x \in \mathbb{R}^d;$$

$$v(x,0) = \vartheta_0(x),$$

(2.12a)

(2.12b)

where the dynamics f is replaced by $f 1_K$, with $1_K(x) = 1$ if $x \in K$, and 0 if $x \not\in K$. This approach is usually used for numerical purposes. However, from the theoretical point of view, equation (2.12) can not be handled with the continuous viscosity framework since the Hamiltonian $H(\cdot,p)$ is discontinuous on the boundary of K. In section 6, we study this approach on a simple numerical example.

3. **Proofs of the main results.**

Proof of Theorem 1.

(i) Assume that $u(x,t) \leq 0$. Then by definition of u and assumptions (H1)-(H2), there exists an admissible trajectory y_ϑ^a such that

$$\vartheta_0(y_\vartheta^a(t)) \leq 0, \text{ and } y_\vartheta^a(\vartheta) \in K \text{ for every } \vartheta \in [0,t].$$

Hence, $\max_{\vartheta \in [0,t]} g(y_\vartheta^a(\vartheta)) \leq 0$, and we have:

$$\vartheta(x,t) \leq \max(\vartheta_0(y_\vartheta^a(t)), \max_{\vartheta \in [0,t]} g(y_\vartheta^a(\vartheta))) \leq 0.$$

(3.1)

Conversely, assume that $\vartheta(x,t) \leq 0$. Then there exists a trajectory y_ϑ^a such that

$$0 \geq \vartheta(x,t) = \max(\vartheta_0(y_\vartheta^a(t)), \max_{\vartheta \in [0,t]} g(y_\vartheta^a(\vartheta))).$$

Thus, for all $\vartheta \in [0,t]$, $g(y_\vartheta^a(\vartheta)) \leq 0$, i.e. $y_\vartheta^a(\vartheta) \in K$, and so y_ϑ^a is an admissible trajectory. Moreover, we have $\vartheta_0(y_\vartheta^a(t)) \leq 0$, hence

$$u(x,t) \leq \vartheta_0(y_\vartheta^a(t)) \leq 0.$$

(ii) The proof uses similar arguments as in (i). \square

The following example show that the converse of Theorem 1 (ii) is false in general, i.e. we can have $\vartheta(x,t) > 0$ and $u(x,t) < 0$.

Example 1. Consider $f = (1,1)^T$, the target $C = [1,2]^2$, the constraint set $K := \mathbb{R}^2 \setminus \{1,0[\times]0,1]\}$, and $x := (-1,-1)$. We assume that $\vartheta_0 < 0$ on the interior $\overset{\circ}{C}$ of C.

In this example, we do not have any control variable and the only possible trajectory starting from x is the one defined by: $y_x(t) = (1,1)^T \ t$. At time $t = 2.5$ we have $y_x(t) = (1.5, 1.5)^T \in \overset{\circ}{C}$ and then $u(x,t) = \vartheta_0(y_x(t)) < 0$. On the other hand, since $y_x(1) = (0,0) \in \partial C$, we have $\max_{\vartheta \in [0,1]} g(y_x(\vartheta)) = 0$, thus $\vartheta(x,t) = 0$ (see Fig. 3.1).

We now give, for sake of completeness, the proof for Proposition 1.

Proof of Proposition 1. The lower semi-continuity of T has been already proved in [13].
Let $\tilde{T}(x) := \inf\{t \geq 0, x \in \text{Cap}_C(t)\}$. The fact that $\tilde{T}(x) = \inf\{t, \vartheta(x, t) \leq 0\}$ is a consequence of Theorem 1(i) and of the definition of $\text{Cap}_C(t)$. It remains just to prove that $T(x) = \tilde{T}(x)$.

Let $t := T(x)$. Since t is the minimal time, by using assumptions (H1)-(H2) and compactness arguments as in [32], there exists an admissible trajectory $y_\alpha x$, such that $y_\alpha x(t) \in C$. Hence $\vartheta(x, t) \leq \vartheta_0(y_\alpha(t)) \leq 0$, and thus $\tilde{T}(x) \leq t = T(x)$.

On the other hand, let $\tilde{t} := \tilde{T}(x)$. For any $n \geq 1$, there exists some $t_n \in [\tilde{t}, \tilde{t} + \frac{1}{n}]$ such that $\vartheta(x, t_n) \leq 0$. We can consider an associated optimal trajectory $y_n := y_\alpha^{u_n} x$ such that $y_\alpha^{u_n}(t_n) \in C$. By using again a compactness argument, and since K and C are closed subsets, we can extract a convergent subsequence and an admissible trajectory y, such that $y_n \rightarrow y$ uniformly on $[0, \tilde{t}]$, and $y(\tilde{t}) \in C$. Hence $T(x) \leq \tilde{t}$, which concludes the proof.

Before giving the proof of Theorem 2, we need the following dynamic programming principle (DPP) for ϑ.

Lemma 1 (Dynamic Programming Principle). The function ϑ is characterized by

(i) for all $t \geq 0$ and $\tau \geq 0$, for all $x \in \mathbb{R}^d$,

$$\vartheta(x, t + \tau) = \inf \left\{ \max(\vartheta(y_\alpha^a(\tau), t), \max_{\theta \in [0, \tau]} g(y_\alpha^a(\theta))), \alpha \in L^\infty((0, \tau); \mathcal{A}) \right\},$$

(ii) $\vartheta(x, 0) = \max(\vartheta_0(x), g(x))$.

Proof. One can refer for instance to Barron and Ishii [9, Proposition 3.1].

The first consequence of the above lemma is the Lipschitz continuity of the value function ϑ.

Proposition 2. Assume (H1). Let ϑ_0 and g are Lipschitz continuous functions satisfying (2.1) and (2.3). Let ϑ the value function defined as in (2.4). For every $T > 0$, ϑ is Lipschitz continuous on $\mathbb{R}^d \times [0, T]$.

Proof. Let $T > 0$ and let $x, x' \in \mathbb{R}^d$ and $t \in [0, +\infty[$. By using the definition of ϑ and the simple inequalities:

$$\max(A, B) - \max(C, D) \leq \max(A - C, B - D), \quad \text{and} \quad \inf A_\alpha - \inf B_\alpha \leq \sup(A_\alpha - B_\alpha) \quad (3.2)$$
we get:

\[
|\vartheta(x, t) - \vartheta(x', t)| \leq \sup_{\alpha(\cdot) \in A} \max \left(\left| \vartheta_0(y_x^\alpha(t)) - \vartheta_0(y_x^\alpha(t')) \right|, \max_{\theta \in [0, t]} \left| g(y_x^\alpha(\theta)) - g(y_x^\alpha(\theta)) \right| \right),
\]

\[
\leq \sup_{\alpha(\cdot) \in A} \left(L_0 \|y_x^\alpha(t) - y_x^\alpha(t')\|, L_g \max_{\theta \in [0, t]} \|y_x^\alpha(\theta) - y_x^\alpha(\theta)\| \right)
\]

where \(L_0 \) and \(L_g \) denote respectively the Lipschitz constant of \(\vartheta_0 \) and \(g \). By assumption (H1), we know that \(|y_x^\alpha(\theta) - y_x^\alpha(\theta)| \leq e^{L_f t} |x - x'| \). Then we conclude that:

\[
|\vartheta(x, t) - \vartheta(x', t)| \leq \max(L_0, L_g) e^{L_f t} |x - x'|,
\]

(3.3)

for any \(x, x' \in \mathbb{R}^d \) and any \(t \in [0, T] \) for \(T \geq 0 \). Now, let \(x \in \mathbb{R}^d \), and \(t, h \geq 0 \). Remarking that \(\vartheta(x, t) \geq g(x) \), we deduce from Lemma 1 that

\[
|\vartheta(x, t + h) - \vartheta(x, t)| = \left| \inf_{\alpha} \max \left(\vartheta(y_x^\alpha(h), t), \max_{\theta \in [0, h]} g(y_x^\alpha(\theta)) \right) \right| - \max(\vartheta(x, t), g(x)) \leq \sup_{\alpha} \max \left(\left| \vartheta(y_x^\alpha(h), t) - \vartheta(x, t) \right|, \max_{\theta \in [0, h]} g(y_x^\alpha(\theta)) - g(x) \right) \]

\[
\leq L_f \max(\max(L_0, L_g) e^{L_f t}, L_g) h
\]

where we have used (3.3) and assumption (H1). This completes the proof.

Now, we recall the definition of viscosity solution for (2.7).

Definition 1 (Viscosity solution). An upper semi-continuous (resp. lower semi-continuous) function \(\vartheta : \mathbb{R}^d \times \mathbb{R}^+ \rightarrow \mathbb{R} \) is a viscosity subsolution (resp. supersolution) of (2.7) if \(\vartheta(x, 0) \leq \vartheta_0(x) \) in \(\mathbb{R}^d \) (resp. \(\vartheta(x, 0) \geq \vartheta_0(x) \)) and for any \((x, t) \in \mathbb{R}^d \times (0, \infty) \) and any test function \(\phi \in C^1(\mathbb{R}^d \times \mathbb{R}^+) \) such that \(\vartheta - \phi \) attains a maximum (resp. a minimum) at the point \((x, t) \in \mathbb{R}^d \times (0, \infty) \), then we have

\[
\min(\partial_t \phi + H(x, \nabla \phi), \ \vartheta - g(x)) \leq 0
\]

(resp. \(\min(\partial_t \phi + H(x, \nabla \phi), \ \vartheta - g(x)) \geq 0 \)).

A continuous function \(\vartheta \) is a viscosity solution of (2.7) if \(\vartheta \) is a viscosity subsolution and a viscosity supersolution of (2.7).

We now give the proof of Theorem 2:

Proof of Theorem 2. The proof can be deduced from [9, Proposition 2.6]. Here, we give the main lines of a direct proof for completeness. We first show that \(\vartheta \) is a solution of (2.7). The fact that \(\vartheta \) satisfies the initial condition is a direct consequence of Lemma 1(ii).

Let us check the supersolution property of \(\vartheta \). By Lemma 1(i), we get that for any \(\tau \geq 0 \)

\[
\vartheta(x, t + \tau) \geq \inf_{\alpha} \vartheta(y_x^\alpha(\tau), t).
\]

Hence, with classical arguments, we can obtain

\[
\partial_t \vartheta + H(x, \nabla \vartheta) \geq 0
\]

in the viscosity sense. Moreover, by definition of \(\vartheta \), for every \((x, t) \in \mathbb{R}^d \times \mathbb{R}^+ \), we have

\[
\vartheta(x, t) \geq \inf_{\alpha} \max_{\theta \in [0, t]} g(y_x^\alpha(\theta)) \geq g(x).
\]
Combining this two inequalities, we get
\[
\min(\partial_t \vartheta + H(x, \nabla \vartheta), \vartheta(x, t) - g(x)) \geq 0
\]
in the viscosity sense, i.e., \(\vartheta \) is a supersolution of (2.7).

Let us now prove that \(\vartheta \) is a subsolution. Let \(x \in \mathbb{R}^d \) and \(t > 0 \). If \(\vartheta(x, t) \leq g(x) \), it is obvious that \(\vartheta \) satisfies:
\[
\min(\partial_t \vartheta + H(x, \nabla \vartheta), \vartheta(x, t) - g(x)) \leq 0.
\]
Now, assume that \(\vartheta(x, t) > g(x) \). By continuity of \(g \) and \(\vartheta \), there exists some \(\tau > 0 \) such that \(\vartheta(y^\alpha_n(\theta), t) > g(y^\alpha_n(\theta)) \) for all \(\theta \in [0, \tau] \) (since \(y^\alpha_n(\theta) \) will stay in a neighborhood of \(x \) which is controlled uniformly with respect to \(\alpha \)). Hence, by using Lemma 1(i), we get that
\[
\vartheta(x, t + h) = \inf_{\alpha} \vartheta(y^\alpha_n(h), t), \quad \text{for any } 0 \leq h \leq \tau.
\]
We then deduce by classical arguments [2] that \(\partial_t \vartheta(x, t) + H(x, \nabla \vartheta(x, t)) \leq 0 \) in the viscosity sense. Therefore, \(\vartheta \) is a viscosity subsolution of (2.7).

The fact that \(\vartheta \) is the unique solution of (2.7) follows from the comparison principle for (2.7) (which is classical, see for instance [4]), and the fact that the Hamiltonian function \(H \) satisfies
\[
\begin{align*}
|H(x_2, p) - H(x_1, p)| &\leq C(1 + |p|) |x_2 - x_1|, \quad \text{ (3.4a)} \\
|H(x, p_2) - H(x, p_1)| &\leq C|p_2 - p_1|, \quad \text{ (3.4b)}
\end{align*}
\]
for some constant \(C \geq 0 \) and for all \(x_1, p_1, x, p \) in \(\mathbb{R}^d \). \(\Box \)

4. Time-dependent state constraints. Let \((\mathcal{K}_\theta)_{\theta \geq 0} \) be a family of closed subsets of \(\mathbb{R}^d \). We assume that:

(H3) the set-valued application \(\theta \mapsto \mathcal{K}_\theta \) is Lipschitz continuous\(^2\) on \([0, +\infty] \).

For \(x \in \mathcal{K}_\theta \), we consider the trajectories solution of (1.1) and satisfying the time-dependent constraints:
\[
y^\alpha_n(\theta) \in \mathcal{K}_\theta, \quad \forall \theta \in [0, t]. \quad \text{(4.1)}
\]

An example of such a situation, is the case where we want to avoid a mobile obstacle located at every \(\theta \geq 0 \) at the open subset \(\mathcal{O}_\theta \), while remaining in a given closed set \(\mathcal{K} \subset \mathbb{R}^d \). In this case, we should set \(\mathcal{K}_\theta := \mathcal{K} \setminus \mathcal{O}_\theta \).

Now, let us define the minimal time function :
\[
\mathcal{T}^\mathcal{K}(x) = \inf \{ t \geq 0 \mid \exists \alpha \in L^\infty([0, t] ; \mathcal{A}), y^\alpha_n(t) \in \mathcal{C} \text{ and } y^\alpha_n(\theta) \in \mathcal{K}_\theta \text{ for } \theta \in [0, t] \}.
\]
In this setting, the function \(\mathcal{T}^\mathcal{K} \) can not be characterized by an HJB equation. The reason for that comes from the time-dependency of the state-constraints. Actually, function \(\mathcal{T}^\mathcal{K} \) even does not satisfy the dynamic programming principle (this is also the case of the minimal time function of non-autonomous systems, see [10]). Also, here we cannot use the ideas developed in the previous sections to determine the capture basins. Nevertheless, we shall see that an equation similar to (2.4) can be used to determine the reachable sets.

Let \(\mathcal{D} \) be a given nonempty closed set of \(\mathbb{R}^d \) (\(\mathcal{D} \) can be a singleton). For \(t \geq 0 \), we consider the attainable set (or, reachability region) starting from \(\mathcal{D} \), defined as the set of

\(^2\)That is, \(\exists C \geq 0, \forall \theta, \theta' \in [0, +\infty[\quad d_H(\mathcal{K}_\theta, \mathcal{K}_\theta') \leq C|\theta - \theta'| \), where \(d_H \) is the Hausdorff distance.
Minimum time problems with state constraints

points that can be reached at time \(t \) by a trajectory starting from \(D \) and satisfying the time-dependent state constraint (4.1), i.e.

\[
\text{Att}_D(t) := \left\{ y^\alpha_x(t) \in \mathbb{R}^d \mid x \in D, \exists \alpha \in L^\infty((0, t); \mathcal{A}), \ y^\alpha_x(\theta) \in K_{\theta}, \ \forall \theta \in [0, t] \right\}.
\]

As in Section 2, we consider a Lipschitz continuous function \(g^\sharp : [0, +\infty] \times \mathbb{R}^d \) such that, \(\forall \theta \geq 0, \ g^\sharp(x, \theta) \leq 0 \Leftrightarrow x \in K_{\theta}. \) (4.2)

Such a function always exists since we can choose \(g^\sharp(x, \theta) := d_{K_{\theta}}(x) \) (note that by assumption (H3), the sign distance function to \(K_{\theta} \) is also Lipschitz continuous in both variables \((x, \theta) \)).

We also consider \(\vartheta^\sharp_0 : \mathbb{R}^d \rightarrow \mathbb{R} \) such that \(\vartheta^\sharp_0(x) \leq 0 \Leftrightarrow x \in D. \) (4.3)

We then consider the following control problem:

\[
\vartheta^\sharp(x, t) := \inf \left\{ \max \left(\vartheta^\sharp_0(y^\alpha_x(t)), \max_{\theta \in [0, t]} g^\sharp(y^\alpha_x(\theta), \theta) \right), \ \alpha \in L^\infty((0, t); \mathcal{A}) \right\}. \quad (4.4)
\]

Similar arguments, as in Section 2, lead to:

Theorem 3. Assume (H1)-(H3) hold. For every \(t \geq 0 \), the attainable set is characterized by

\[
\text{Att}_D(t) = \left\{ x, \ \vartheta^\sharp(x, t) \leq 0 \right\}.
\]

Theorem 4. We assume (H1) and (H3). Let \(\vartheta^\sharp_0 \) and \(g^\sharp \) be Lipschitz continuous functions satisfying respectively (4.3) and (4.2). Then \(\vartheta^\sharp \) is the unique continuous viscosity solution of

\[
\begin{align*}
\min(\partial_t \vartheta^\sharp + H(x, D_x \vartheta^\sharp), \ \vartheta^\sharp - g^\sharp(x, t)) &= 0, \quad t \geq 0, \ x \in \mathbb{R}^d, \\
\vartheta^\sharp(x, 0) &= \max(\vartheta^\sharp_0(x), \ g^\sharp(x, 0)), \quad x \in \mathbb{R}^d.
\end{align*} \quad (4.5)
\]

Remark 8. It is worth to remark that the HJB inequality (4.5) (with a time-dependent obstacle function \(g^\sharp \)) allows to determine the reachble sets and not the capture basins.

Remark 9. For \(x \in K_{\theta}, \) if we want to know the minimal time needed to reach the target \(\mathcal{C}, \) starting from \(x \) and satisfying the state-constraints (4.1), we should consider \(D = \{x\} \) and set \(\vartheta^\sharp_0(y) := d(x, y) \) (this is the signed distance to the set \(D := \{x\} \)). Then let \(\vartheta^\sharp \) be the solution of (4.5) and where \(g^\sharp \) represents the time-dependent state constraints. In that case, the set of points that can be reached at time \(t \) and starting from \(x \) is

\[
\text{Att}_{\{x\}}(t) := \left\{ x, \ \vartheta^\sharp(x, t) \leq 0 \right\}
\]

(which also identical to \(\left\{ x, \ \vartheta^\sharp(x, t) = 0 \right\} \) in this specific case). Finally we can recover the minimal time to reach \(\mathcal{C} \) as

\[
\mathcal{T}(x) := \inf \left\{ t \geq 0, \ \text{Att}_{\{x\}}(t) \cap \mathcal{C} \neq \emptyset \right\}.
\]
5. Numerical scheme and error estimates. In this section we propose a finite difference scheme to approximate the solution u of (2.7) or (4.5). In this section $H : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ is only assumed to be a given continuous function satisfying (3.4).

For given mesh sizes $\Delta x > 0$, $\Delta t > 0$, we define

$$\mathcal{G} := \{ I \Delta x, I \in \mathbb{Z}^d \}$$

where N_T is the integer part of $T/\Delta t$. The discrete running point is (x_I, t_n) with $x_I = I \Delta x$, $t_n = n \Delta t$. The approximation of the solution ϑ at the node (x_I, t_n) is written indifferently as $v(x_I, t_n)$ or v^n_I according to whether we view it as a function defined on the lattice or as a sequence.

Now, given a numerical Hamiltonian $\mathcal{H} : \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ (which will be a consistent approximation of the Hamiltonian H), we consider the following scheme

$$\begin{cases}
\min \left(\frac{v^{n+1}_I - v^n_I}{\Delta t} + \mathcal{H}(x_I, D^+ v^n(x_I), D^- v^n(x_I)), v^{n+1}_I - g(x_I, t_{n+1}) \right) = 0 \quad (5.1) \\
v^0_I = \tilde{u}_0(x_I)
\end{cases}$$

where \tilde{u}_0 is an approximation of u_0 and

$D^+ v^n(x_I) = (D^+_{x_1} v^n(x_I), \ldots, D^+_{x_d} v^n(x_I))$,

$D^- v^n(x_I) = (D^-_{x_1} v^n(x_I), \ldots, D^-_{x_d} v^n(x_I))$

are the discrete space gradient of the function v^n at point x_I defined for a general function w by

$$D^\pm_{x_i} w(x_I) = \pm \frac{w(x_I + \pm) - w(x_I)}{\Delta x}, \quad (5.2)$$

with the notation $I^{k, \pm} = (i_1, \ldots, i_{k-1}, i_k \pm 1, i_{k+1}, \ldots, i_d)$.

We make the following assumptions on the numerical Hamiltonian \mathcal{H}:

(H4) There exists $C_1 > 0$ such that for all $x_I \in \mathcal{G}$, $(P^+, P^-) \in \mathbb{R}^d \times \mathbb{R}^d$,

$$|\mathcal{H}(x_I, P^+, P^-)| \leq C_1(|P^+|_\infty + |P^-|_\infty)$$

(H5) There exists $C_2 > 0$ such that for all $x_I \in \mathcal{G}$, $P^+, P^-, Q^+, Q^- \in \mathbb{R}^d$,

$$|\mathcal{H}(x_I, P^+, P^-) - \mathcal{H}(x_I, Q^+, Q^-)| \leq C_2(|P^+ - Q^+| + |P^- - Q^-|)$$

(H6) $\mathcal{H} = \mathcal{H}(x_I, P_1^+, \ldots, P_d^+, P_1^-, \ldots, P_d^-)$ satisfies the following monotonicity condition, a.e. $(x, P^+, P^-) \in \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d$

$$\frac{\partial \mathcal{H}}{\partial P_i^+}(x, P^+, P^-) \leq 0 \quad \text{and} \quad \frac{\partial \mathcal{H}}{\partial P_i^-}(x, P^+, P^-) \geq 0.$$

Remark 10. This assumptions holds in the a.e. sense and makes sense by the Lipschitz assumption.

(H7) (consistency) There exists $C_3 > 0$ such that for all $x_I \in \mathcal{G}$, $x \in \mathbb{R}^d$ and $P \in \mathbb{R}^d$,

$$|\mathcal{H}(x_I, P, P) - H(x, P)| \leq C_3|x_I - x|.$$
Remark 11. It is well known that the monotonicity assumption (H6), together with the following CFL condition:

$$\frac{\Delta t}{\Delta x} \sum_{i=1}^{d} \left(\left| \frac{\partial H}{\partial P_i^-}(x, P^+, P^-) \right| + \left| \frac{\partial H}{\partial P_i^+}(x, P^+, P^-) \right| \right) \leq 1,$$

a.e. \((x, P^+, P^-) \in \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d,

(5.3)

ensures that the scheme

$$\left\{ \begin{array}{l}
\frac{v_i^{n+1} - v_i^n}{\Delta t} + H(x_I, D^+ v^n(x_I), D^- v^n(x_I)) = 0 \\
v_i^0 = \tilde{u}_0(x_I)
\end{array} \right.$$

is monotone (i.e., if \((v^n)_n\) is a subsolution of (5.4) and if \((w^n)_n\) is a supersolution of (5.4) and such that \(v^n \leq w^n\), then \(v^{n+1} \leq w^{n+1}\)).

Furthermore by (H5), we have \(\left| \frac{\partial H}{\partial P_i^+} \right| \leq C_2\) and thus the CFL condition is satisfied as soon as \(\frac{\Delta t}{\Delta x} \leq 1/(2dC_2)\).

Remark 12. Equation (5.1) implies also that

$$v_I^{n+1} = \max \left(v_I^n - \frac{\Delta t}{\Delta x} H(x_I, D^+ v^n(x_I), D^- v^n(x_I)), g(x_I, t_{n+1}) \right).$$

We deduce, assuming (H6) and the CFL condition (5.3), that the scheme (5.1) is monotone.

We then have the following error estimate:

Theorem 5. (Discrete-continuous error estimate) Assume (H4)-(H7) and that \(v_0\) and \(g\) are Lipschitz continuous and bounded. Let \(T > 0\). There exists a constant K > 0 (depending only on \(d, C_1, C_2, C_3 \|D\theta_0\|_\infty, \|Dg\|_\infty, \|v_0\|_\infty, \|g\|_\infty\) and \(\|\frac{\partial H}{\partial P_i^+}\|_\infty\)) such that if we choose \(\Delta x\) and \(\Delta t\) sufficiently small, such that the CFL condition (5.3) holds and

$$\left(\sqrt{T} (\Delta x + \Delta t)^{1/2} + \sup_\vartheta |\vartheta_0 - \tilde{u}_0| \right) \leq \frac{1}{K},$$

then the error between the solution \(\vartheta\) of (2.7) (with a Hamiltonian satisfying (3.4)) and the discrete solution \(v\) of the finite difference scheme (5.1) satisfies

$$\sup_{0 \leq n \leq N_T} \sup_\vartheta |\vartheta(\cdot, t_n) - v^n| \leq K \left(\max(T, \sqrt{T}) (\Delta x + \Delta t)^{1/2} + \sup_\vartheta |\vartheta_0 - \tilde{u}_0| \right).$$

Remark 13. The fact that \(\vartheta_0\) and \(g\) are bounded is not a restriction since we can truncate them and this will not change the set \(\{x, \vartheta(x, t) \leq 0\}\).

Proof. The proof is an adaptation of the one of Crandall and Lions [16], revisited by Alvarez et al. [1]. Nevertheless, for the reader’s convenience, we give the main steps to show how to take into account the obstacle. The main idea of the proof is the same as the one of comparison principles, i.e., to consider the maximum of \(u - v\), to duplicate the variable and to use the viscosity inequalities to get the result. We consider that \(\Delta x + \Delta t \leq 1\).

We first assume that

$$v_0(x_I) \geq \tilde{u}_0(x_I), \quad \text{for all } I \in \mathbb{Z}^d$$

(5.5)
and we set
\[\mu^0 := \sup_{\vartheta} (\vartheta_0 - \tilde{u}_0) \geq 0. \] (5.6)

We denote throughout by K various constant depending only on d, C_1, C_2, $C_3 \|D\vartheta_0\|_\infty$, $\|Dg\|_\infty$, $\|\vartheta_0\|_\infty$, $\|g\|_\infty$ and $\|\frac{\partial H}{\partial p}\|_\infty$. Since ϑ_0 and g are bounded, we deduce that ϑ is bounded.

The proof is splitted in three steps.

Step 1: Estimate on v. We have the following estimate for the discrete solution
\[-Kt_n - \mu^0 \leq v(x_I, t_n) - \vartheta_0(x_I) \leq Kt_n + \mu^0. \] (5.7)

To show this, it suffice to consider $w^{\pm}(x_I, t_n) = \vartheta_0(x_I) \pm Kt_n \pm \mu^0$ and to show that w^+ (resp. w^-) is a subsolution (resp. a supersolution) of the scheme for K large enough. The result will then follow by the monotonicity of the scheme. Let us prove that w^+ is a supersolution.

In one way, we have
\[
\frac{w^{+, n+1}_I - w^{+, n}_I}{\Delta t} + H(x_I, D^+ w^{+, n}(x_I), D^- w^{+, n}(x_I)) = K + H(x_I, D^+ \vartheta_0(x_I), D^- \vartheta_0(x_I)) \\
\geq K - 2C_1 \|D\vartheta_0\|_\infty \\
\geq 0
\]
for $K \geq 2C_1 \|D\vartheta_0\|_\infty$ and where we have used assumption (H4) for the second line.

In the other way, we also have
\[
w^+(x_I, t_{n+1}) - g(x_I, t_{n+1}) = \vartheta_0(x_I) + Kt_{n+1} + \mu^0 - g(x_I, t_{n+1}) \\
\geq \vartheta_0(x_I) - g(x_I, 0) + Kt_{n+1} + g(0, x_I) - g(x_I, t_{n+1}) \\
\geq t_{n+1}(K - \|Dg\|_\infty) \\
\geq 0
\]
for $K \geq \|Dg\|_\infty$.

From the two previous inequalities, we deduce that w^+ is a supersolution of the scheme. Remarking moreover that
\[w^+(x_I, 0) = \vartheta_0(x_I) + \mu^0 \geq v_0(x_I) \]
we conclude using the monotonicity of the scheme that
\[v^+_I \leq w^+_I \quad \text{for all } (I, n) \in Z^d \times \{0, \ldots, N_T\} \]
i.e.
\[v(x_I, t_n) \leq \vartheta_0(x_I) + Kt_n + \mu_0. \]

To obtain the reverse inequality, we show in a similar way that
\[
\frac{w^{-, n+1}_I - w^{-, n}_I}{\Delta t} + H(x_I, D^- w^{-, n}(x_I), D^- w^{-, n}(x_I)) \leq 0,
\]
which implies that w^- is a subsolution of the scheme, and obtain the desired result.
Before continuing the proof, we need a few notations. We put
\[\mu := \sup_{\vartheta} (\vartheta - v). \]
We want to bound from above \(\mu \) by \(\mu^0 \) plus a constant. We assume that \(\mu > 0 \) (otherwise the estimate is trivial). For every \(0 < \alpha \leq 1, 0 < \varepsilon \leq 1 \) and \(0 < \eta \leq 1 \), we set
\[M_{\eta}^{\alpha, \varepsilon} := \sup_{\mathbb{R}^N \times G \times (0,T) \times \{0,...,T_N\}} \Psi_{\eta}^{\alpha, \varepsilon}(x, x_I, t, t_n), \]
with
\[\Psi_{\eta}^{\alpha, \varepsilon}(x, x_I, t, t_n) := \vartheta(x, t) - v(x_I, t_n) - \frac{|x - x_I|^2}{2\varepsilon} - \frac{|t - t_n|^2}{2\varepsilon} - \eta t - \alpha(|x|^2 + |x_I|^2). \]
We shall drop the superscripts and subscripts on \(\Psi \) if there is no ambiguity. We remark that for \(\eta \) and \(\alpha \) small enough, we have
\[M_{\eta}^{\alpha, \varepsilon} \geq \frac{\mu}{2}. \]
Since \(\vartheta \) and \(v \) are bounded (using Step 1 for \(v \)), we then deduce that \(\Psi \) achieves its maximum at some point that we denote by \((x, x_I, t, t_n) \).

Step 2: Estimates for the maximum point of \(\Psi \). Here we show that there exists a constant \(K > 0 \) such that the following estimates hold:
\[\alpha(|x|^2 + |x_I|^2) \leq K \] (5.8)
and
\[|x - x_I| \leq K \varepsilon \quad \text{and} \quad |t - t_n| \leq K \varepsilon. \] (5.9)
To prove (5.8), it suffices to use the inequality \(\Psi(x, x_I, t_n, t_n) \geq \Psi(0,0,0,0) \geq 0 \). Indeed, this implies
\[\alpha(|x|^2 + |x_I|^2) \leq \vartheta(x, t) - v(x_I, t_n) \leq K. \]
To prove the first estimate of (5.9), we use the inequality \(\Psi(x, x_I, t_n) \geq \Psi(x_I, x_I, t, t_n) \) to get
\[\frac{|x - x_I|^2}{2\varepsilon} \leq \vartheta(x_I, t) - \vartheta(x, t) + \alpha(|x_I|^2 - |x|^2) \leq |x - x_I| (\alpha(|x_I| + |x|) + K) \leq K|x - x_I| \]
which implies the result.

The last inequality is obtained in the same way by using the inequality \(\Psi(x, x_I, t, t_n) \geq \Psi(x_I, x_I, t_n, t_n) \).

Step 3 : Upper bound of \(\mu \). First, we claim that for \(\eta \) large enough, we have either \(t = 0 \), or \(t_n = 0 \) or
\[\mu \leq K \sqrt{T} \sqrt{\Delta x + \Delta t}. \]
We argue by contradiction. We suppose that the function \((y, s) \mapsto \Psi(y, x, s, t_n) \) achieves its maximum at a point \((x, t) \) of \(\mathbb{R}^N \times (0,T) \). Then, using the fact that \(\vartheta \) is a subsolution of (2.7), we deduce that
\[\min (p_t + \eta + H(x, p_x + 2\alpha x), \vartheta(x, t) - g(x, t)) \leq 0 \]
where

\[p_t = \frac{t - t_n}{\varepsilon} \quad \text{and} \quad p_x = \frac{x - x_I}{\varepsilon}. \]

We now distinguish two cases.

Case 1: \(\vartheta(x, t) \leq g(x, t) \). Since \(v \) is a solution of the scheme, we also have

\[v(x_I, t_n) \geq g(x_I, t_n). \]

We then deduce that

\[\frac{\mu}{2} \leq \vartheta(x, t) - v(x_I, t_n) \leq K(|x - x_I| + |t - t_n|) \leq K\varepsilon. \]

Choosing \(\varepsilon \leq \sqrt{T/\Delta x + \Delta t} \), we get a contradiction.

Case 2: \(p_t + \eta + H(x, p_x + 2\alpha x) \leq 0 \). In this case, using the fact that

\[v^{n+1}_I - v^n_I + H(x_I, D^+v^n(x_I), D^-v^n(x_I)) \geq 0, \]

we deduce using the classical arguments of the proof of Crandall and Lions that

\[p_t + \frac{\Delta t}{2\varepsilon} \geq -H \left(x_I, p_x - \frac{\Delta x}{2\varepsilon} - \alpha(2x_I + \Delta x), p_x + \frac{\Delta x}{2\varepsilon} - \alpha(2x_I - \Delta x) \right). \quad (5.10) \]

Subtracting (5.10) to the inequation satisfied by \(\vartheta \), we get

\[\eta \leq \frac{\Delta t}{2\varepsilon} + H \left(x_I, p_x - \frac{\Delta x}{2\varepsilon} - \alpha(2x_I + \Delta x), p_x + \frac{\Delta x}{2\varepsilon} - \alpha(2x_I - \Delta x) \right) - H(x, p_x + 2\alpha x) \]
\[\leq \frac{\Delta t}{2\varepsilon} + 2K\alpha|x| + H(x_I, p_x, p_x) - H(x, p_x) + 2C_2 \left(\frac{\Delta x}{2\varepsilon} + 2\alpha|x_I| + \alpha \Delta x \right) \]
\[\leq K \frac{\Delta x + \Delta t}{2\varepsilon} + K\sqrt{\alpha} + C_3|x_I - x| \]
\[\leq K \frac{\Delta x + \Delta t}{2\varepsilon} + K\sqrt{\alpha} + K\varepsilon \]

where we have used the Lipschitz continuity of \(H \) in \(p \), assumption (H5) for the second line, assumption (H7) and (5.8) for the third one and (5.9) for the last one.

We then deduce that for \(1 \geq \eta \geq \eta^* := K\frac{\Delta x + \Delta t}{2\varepsilon} + K\sqrt{\alpha} + K\varepsilon \), we have either \(t = 0 \) or \(t_n = 0 \). If \(t = 0 \), then we have

\[M^{\alpha,\varepsilon}_\eta = \Psi(x, x_I, 0, t_n) \leq \vartheta_0(x) - v(x_I, t_n) \]
\[\leq KT_n + \mu^0 + K|x - x_I| \]
\[\leq K\varepsilon + \mu^0, \]

where we have used Step 1, the Lipschitz continuity of \(\vartheta \) and (5.9). In the same way, if \(t_n = 0 \), we get

\[M^{\alpha,\varepsilon}_\eta = \Psi(x, x_I, t, 0) \leq \vartheta(x, t) - v(x_I, 0) \]
\[\leq K(|x - x_I| + |t|) + \mu^0 \]
\[\leq K\varepsilon + \mu^0. \]
We obtain that for all \((s_n, y_I) \in \{0, \ldots, N_T \Delta t\} \times G\), we have
\[
\vartheta(y_I, s_n) - v(y_I, s_n) - K \left(\frac{\Delta x + \Delta t}{2\varepsilon} + \sqrt{\alpha + \varepsilon} \right) T - 2\alpha |y_I|^2 \leq M^\alpha,\varepsilon \leq K \varepsilon + \mu^0.
\]
Sending \(\alpha\) to 0, taking the supremum over \((y_I, s_n) \in G \times \{0, \ldots, N_T \Delta t\}\) and choosing \(\varepsilon = \sqrt{T} \sqrt{\Delta x + \Delta t}\), we finally get
\[
\sup_{\vartheta \times \{0, \ldots, N_T \Delta t\}} \vartheta(y_I, s_n) - v(y_I, s_n) = \mu \leq K \sqrt{T} \sqrt{\Delta x + \Delta t} + \mu^0
\]
provided that \(\Delta x + \Delta t \leq \frac{\mu}{K}\) and \(0 \leq \mu_0 \leq 1\). Using the same arguments as in Alvarez et al. [1, Theorem 2], we easily deduce the result in the general case when \(-1 \leq \mu_0 \leq 1\).

This ends the proof of Theorem 5. \(\Box\)

6. Numerical Simulations. We keep the notations of the previous Section. We now apply finite difference schemes for solving equation (2.7). We consider here the case of dimension \(d = 2\), and the Hamiltonian defined by (2.6). We denote \(f = (f_1, f_2)\) the two components of the dynamics \(f\).

In order to ensure convergence of the scheme in the viscosity framework, we need monotonicity properties (assumption \((H6)\)). A basic standard finite difference scheme is obtained with

\[
\mathcal{H}(x, P^+, P^-) := \max_{\alpha \in \mathcal{A}} \left(\max(0, f_1(x, \alpha)) P^+_1 + \min(0, f_1(x, \alpha)) P^-_1 + \max(0, f_2(x, \alpha)) P^+_2 + \min(0, f_2(x, \alpha)) P^-_2 \right).
\]

Then the following scheme
\[
v_{I}^{n+1} = \max \left(v^n_I - \Delta t \mathcal{H}(x_j, D^+ v_I(x_I), D^- v_I(x_I)), g(x_I) \right),
\]

is consistent with (2.7) and satisfies assumptions \((H4)-(H7)\). The CFL condition, which ensures the monotonicity of the scheme, is then given by
\[
\frac{\Delta t}{\Delta x} \max_x \max_{\alpha} \left(|f_1(x, \alpha)| + |f_2(x, \alpha)| \right) \leq 1.
\]

An other standard scheme is obtained by
\[
v_{I}^{n+1} = \max \left(v^n_I - \Delta t \mathcal{H}^{LF}(x_j, D^+ v_I(x_I), D^- v_I(x_I)), g(x_I) \right),
\]

where \(\mathcal{H}^{LF}\) is the Lax-Friedrich (LF) Hamiltonian:
\[
\mathcal{H}^{LF}(x, P^+, P^-) := H(x, \frac{P^+ + P^-}{2}) - \frac{C_1(x)}{2} (P^+_1 - P^-_1) - \frac{C_2(x)}{2} (P^+_2 - P^-_2)
\]

and where \(C_i(x)\) are chosen such that \(\max_P \| \partial H / \partial P \| \leq C_i(x)\). Then, under the CFL condition \(\Delta t \leq \frac{C_1}{max_0 (C_1(x) + C_2(x))} \leq 1\), the scheme is monotone and satisfies \((H4)-(H7)\).

Although monotone schemes ensure convergence properties as well as error estimates, they are at most of first order [21]. This can lead to numerical diffusion problems as time
increases. One way to diminish this diffusion problem is to use higher order ENO schemes as proposed by Osher and Shu [30]. Instead of (6.2), the scheme can be formulated as follows:

\[v_I^{n+1} = \max \left(v_I^n - \Delta t \mathcal{H}^{LF}(x_I, \tilde{D}_{v,n}^+(x_I), \tilde{D}_{v,n}^-(x_I)), g(x_I) \right), \]

(6.3)

where \(\tilde{D}_{v,n}^\pm(x_I) \) correspond to higher order numerical approximations of the derivatives \(\frac{\partial v}{\partial x_i} \) (this can also be coupled with a Runge-Kutta time discretization scheme). The scheme (6.3) is not necessarily monotone, and its convergence is not proved. Its relevance is proved in many numerical experiments (see [30] and Example 1 below).

In our illustrations, except otherwise precised, we shall use a second order ENO scheme [30], denoted “ENO2”.

Example 1: (Backward reachable set with obstacle.) In this example we compute the backward reachable set for the target \(\mathcal{C} \) which is the ball centred at \((1, 1)\) of radius 0.5, and with a rotation-type dynamics: \(f(x_1, x_2) = 2\pi(-x_2, x_1) \). We also consider an obstacle which is the square centred at \((-0.5, 0)\) and of length 0.8.

In Fig. 6.1, we use the first-order LF scheme, and the number of mesh points \((M_x, M_y)\) is either \(100^2\) or \(200^2\). We observe a numerical convergence towards the exact front, but at a slow rate. In Fig. 6.2, we use the second-order ENO2 scheme, with \(100^2\) mesh points. We see that the result is greatly improved.

![Figure 6.1](image1)

\[M_x = M_y = 100 \quad M_x = M_y = 200 \]

Table 6.1

<table>
<thead>
<tr>
<th>(M_{x_1} = M_{x_2})</th>
<th>Approach (2.12)</th>
<th>Approach (2.7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>1.4590</td>
<td>0.2810</td>
</tr>
<tr>
<td>150</td>
<td>0.2540</td>
<td>0.1244</td>
</tr>
<tr>
<td>300</td>
<td>0.1646</td>
<td>0.0762</td>
</tr>
</tbody>
</table>

(Example 1) Hausdorff distance between numerical front and the exact one: comparison of (2.12) and (2.7) (same data as in Fig. 6.3)

When we enlarge the size of the obstacle, the backward reachable set becomes narrow. And still in this case the numerical solution of (2.7) gives a good approximation results. In Fig 6.3, we compare our approach to the formal one based on (2.12). The obstacle is now the square centred in \((-0.5, 0.3)\) and of length 1.0. We observe that the numerical results based
Example 2: In this second example we consider a simplified Zermelo problem: a swimmer wants to reach the target $C := B(0, r)$ which is the ball centred at the origin and of radius $r = 0.25$. The dynamics, depending on a control $u = (u_1, u_2)$ where $u_1^2 + u_2^2 \leq 1$ is given by
\[f(x, u) = (c + u_1, u_2), \quad \text{for } x := (x_1, x_2) \in \mathbb{R}^2, \]
where $c := 2$ is the speed of the current, and u is the speed of the swimmer. We consider two fixed obstacles as represented in Fig. 6.4. In order to obtain the set of points that can reach the target up to time t, the Hamiltonian function considered here is (see Remark 2):
\[H(x, \nabla v) := \max_{\lambda \in [0, 1]} \max_{u_1^2 + u_2^2 \leq 1} \lambda (-c \partial x_1 v - u_1 \partial x_1 v - u_2 \partial x_2 v) \]
\[\equiv \max \left(0, -c \partial x_1 v + \| \nabla v \| \right). \]
(Note that the set of points that can reach the target at time t exactly would be obtained by using simply $H(x, \nabla v) := -c \partial x_1 v + \| \nabla v \|$.)
Numerical results are given in Fig. 6.4. We have used the ENO2 scheme with 100^2 grid points. Computations are performed up to time $t = 2$ and on the domain $[-2, 2] \times [-1.5, 1.5]$. For a given $x = (x_1, x_2)$, the obstacle function is defined by

$$g(x) := \max \left(g_{\min}, C_1 (r_a - \|x - a\|_{\infty}), C_1 (r_b - \max(\|x_1 - b_1\|, \frac{1}{3} |x_2 - b_2|) \right)$$

(6.4)

where $r_a = 0.2, a = (0.3, 0.4)$ and $r_b = 0.2, b = (-1, -1.5), C_1 := 20$, and $g_{\min} := -0.2$.

The initial data is defined by $\vartheta_0(x) := C_1 \min(r_0, \|x\| - r_0)$ where $r_0 = 0.25$.

We observe a small gap between the exact front and the approximated one.

Remark 14. As said in Remark 7, the theoretical results hold for any choice of ϑ_0 and g such satisfying (2.3) and (2.1). However, the choice of ϑ_0 and g seems important for numerical purposes. Indeed when we consider $\vartheta_0(x) := \min(r_0, \|x\| - r_0)$ and $g(x) := \max \left(r_a - \|x - a\|_{\infty}, r_b - \max(\|x_1 - b_1\|, \frac{1}{3} |x_2 - b_2|) \right)$

instead of (6.4), then the numerical results are less accurate.

In Figure 6.5, we give also some numerical results obtained by using the approach based on (2.9). As said in Section 2.1, this approach characterizes the backward reachable sets for every $\eta > 0$. However, when we set $\eta = 1$ then the obstacle is almost not taken into account, while for bigger parameters of η, a numerical diffusion is observed.

Fig. 6.4. (Example 2) Backward reachable set for the Zermelo problem with obstacle, at $t = 0.75$ (left) and at $t = 2.0$ (right). The computational domain is $[-2, 2]^2$, and $M_{x_1} = M_{x_2} = 100$.

In Figure 6.5, we give also some numerical results obtained by using the approach based on (2.9). As said in Section 2.1, this approach characterizes the backward reachable sets for every $\eta > 0$. However, when we set $\eta = 1$ then the obstacle is almost not taken into account, while for bigger parameters of η, a numerical diffusion is observed.

Fig. 6.5. (Example 2) Approach (2.9) with various η parameters, and $M_{x_1} = M_{x_2} = 100$.

Minimum time problems with state constraints

Fig. 6.6. (Example 2) Penalisation approach (2.11) with various ϵ parameters, and $M_{x_1} = M_{x_2} = 100$.

We give in Figure 6.6 the results obtained with the penalization approach (2.11) and with different parameters ϵ. For $\epsilon \geq 10^{-2}$, the penalization approach does not take into account the obstacle. On the other hand, for small parameters $\epsilon \leq 10^{-3}$, the obstacle is well taken into account. However, the Lipshitz-constant of function u^ϵ becomes very high leading to less accuracy in the numerical computations (the error estimate depends on this Lipshitz constant).

Example 3: In this last example we consider the Zermelo problem with a nonlinear dynamics. The target $C : = B(0, r)$ is the ball centred at the origin and of radius $r = 0.25$. The dynamics is now given by

$$f(x, u) = (c - ax_2^2 + u_1, u_2) \text{ for } x = (x_1, x_2) \in \mathbb{R}^2,$$

where $a = 0.5$, $c : = 2$ is the speed of the current, and $u = (u_1, u_2)$ is the speed of the swimmer, with $\|u\| : = (u_1^2 + u_2^2)^{1/2} \leq 1$ (on the boundary $x_2 \pm 2$, the current speed vanishes). We consider the same two fixed obstacles as before. The Hamiltonian function considered here is thus

$$H(x, \nabla v) : = \max \left(0, -(c - ax_2^2) \partial_{x_1} v + \|\nabla v\| \right).$$

Fig. 6.7. (Example 3), obstacle approach (2.7).

In this example, the computational domain is $[-2,2] \times [-2,2]$. We show in Figs. 6.7, 6.8, and 6.9, the numerical results obtained, respectively, with the obstacle approach (2.7), approach (2.9) and the penalization method (2.11).
These results are computed at time time $T = 3$. Comparison is made with the numerical solution computed by solving (2.7) in the refined grid with $M_{x_1} = M_{x_2} = 400$ (black curve). On this non-linear example, we see that the obstacle approach (2.7) is more accurate than the two others.

![Approach (2.9), $\eta = 1$](image1)

![Approach (2.9), $\eta = 10^3$](image2)

![Approach (2.9), $\eta = 10^5$](image3)

Fig. 6.8. (Example 3) Approach (2.9) with various η parameters, $M_{x_1} = M_{x_2} = 100$.

![Approach (2.11), $\epsilon = 10^{-3}$](image4)

![Approach (2.11), $\epsilon = 10^{-5}$](image5)

![Approach (2.11), $\epsilon = 10^{-7}$](image6)

Fig. 6.9. (Example 3) Penalisation approach (2.11) with various ϵ parameters, $M_{x_1} = M_{x_2} = 100$.

Appendix A. Two-player games with state constraints. We present a generalization of the previous approach to the case of two-player deterministic games with state constraints, without assuming any controllability assumption. We refer to [37, 18, 2, 35] and references therein for an introduction and some results for deterministic two-player games with infinite horizon.

In the literature, a controllability assumption or continuity of the value function is in general assumed [3] in order to deal with state-constrained problems. Note that in the work of Cardaliaguet, Quincampoix and Saint-Pierre [15], no controllability assumption is assumed, and a characterization is obtained involving non-smooth analysis.

Let A and B be two nonempty compact subset of \mathbb{R}^m and \mathbb{R}^p respectively. For $t \geq 0$, let A_t be the set of measurable functions $\alpha : (0, t) \to A$, and let B_t be the set of measurable function $\beta : (0, t) \to B$. We consider a continuous dynamics $\mathcal{F} : \mathbb{R}^d \times A \times B \to \mathbb{R}^d$, and, for every $x \in \mathbb{R}^d$ and $(\alpha, \beta) \in A_t \times B_t$, its associated trajectory $y = y^{\alpha, \beta}_x$ solution of

$$\dot{y}(s) = \mathcal{F}(y(s), \alpha(s), \beta(s)), \text{ for a.e. } s \in [0, t], \quad y(0) = x. \quad (A.1)$$

We consider a game involving two players. The first player wants to steer the system (initially at point x) to the target C in minimal time, by staying in \mathcal{K} (and using her input α), while
the second player tries to steer the system away from \(C \) or from \(K \) (with her input \(\beta \)). We define the set of non-anticipative strategies for the first player, as follows:

\[
\Gamma_t := \left\{ a : B_t \to A_t, \, \forall (\beta, \bar{\beta}) \in B_t, \, \text{and} \, \forall s \in [0, t], \right. \\
\left. \left(\beta(\theta) = \bar{\beta}(\theta), \, \text{a.e.} \, \theta \in [0, s] \right) \Rightarrow \left(a[\beta](\theta) = a[\bar{\beta}](\theta), \, \text{a.e. on } [0, s] \right) \right\}.
\]

Then we are interested to characterize the following capture basin for the first player:

\[
\text{Cap}_c(t) := \left\{ x, \, \exists a \in \Gamma_t, \, \forall \beta \in B_t, \left(y_x^{a[\beta],\beta}(t) \in C, \, \text{and} \, y_x^{a[\beta],\bar{\beta}}(\theta) \in K, \, \forall \theta \in [0, t] \right) \right\}
\]

Now we consider a function \(g \) satisfying (2.3), and we define the following value function for the first player:

\[
\vartheta(x, t) := \inf_{a \in \Gamma_t} \max_{\beta \in B_t} \left\{ \max \left(\vartheta_0(y_x^{a[\beta],\beta}(t)), \max_{\theta \in [0, t]} g(y_x^{a[\beta],\beta}(\theta)) \right) \right\}. \tag{A.2}
\]

By using similar arguments as before, we have:

Theorem 6. (i) For any \(t \geq 0 \), the capture basin for the first player is characterized by

\[
\text{Cap}_c(t) = \{ x, \, \vartheta(x, t) \leq 0 \}.
\]

(ii) If \(g \) and \(\vartheta_0 \) are Lipschitz continuous, \(\vartheta \) is the unique continuous viscosity solution of:

\[
\begin{align*}
\min(\partial_t \vartheta + \mathbf{P}(x, \nabla \vartheta), \, \vartheta - g(x)) &= 0, \quad t \geq 0, \, x \in \mathbb{R}^d, \\
\vartheta(x, 0) &= \max_{a \in A} \vartheta_0(x, g(x)) \quad x \in \mathbb{R}^d.
\end{align*} \tag{A.3a} \tag{A.3b}
\]

where \(\mathbf{P}(x, p) := \max_{a \in A} \min_{\beta \in B} - \mathbf{J}(x, a, \beta) \cdot p. \)

This gives again a characterization of the capture basin with state constraints by using a continuous viscosity approach. The corresponding minimal time function can then be recovered as in Proposition 1.

References

