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Abstract

Front solutions of the one-dimensional Richards’ equation used to

describe groundwater flow are studied systematically for the three soil

retention models known as Brooks–Corey, Mualem–Van Genuchten and

Storm–Fujita. Both the infiltration problem when water percolates from

the surface into the ground under the influence of gravity and the imbi-

bition (absorption) problem when groundwater diffuses in the horizontal

direction without the gravity effect are considered. In general, self-similar

solutions of the first kind in the form of the front exist only for the imbi-

bition case; such solutions are stable against small perturbations. In the

particular case of the Brooks–Corey model, self-similar solutions of the
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second kind in the form of decaying pulse also exist both for the imbibi-

tion and infiltration cases. Steady-state solutions in the form of traveling

fronts exist for the infiltration case only. The existence of such solutions

does not depend on the specifics of the soil retention model. It is shown

numerically that these solutions are stable against small perturbations.

Key words: Porous media; groundwater flow; Richards’ equation; self-similar

solution; steady-state solution; water front stability.
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1 Introduction

The basic equation in the theory of groundwater flow through unsaturated

porous media is Richards’ equation which was suggested in 1931 [7]. This non-

linear convection-diffusion equation can be written as a conservation law for

the water content, the quantity of water contained in a given soil volume. The

convection term is due to gravity while the diffusive term comes from Darcy’s

law (see, e.g., [10]. One of the remarkable features of such partial differential

equations is the existence of traveling-waves and self-similar solutions (see, e.g.,

the articles “Diffusion” and “Zeldovich–Frank-Kamenetsky Equation” in the en-

cyclopedia [9]). Another well-known example of nonlinear convection-diffusion

equation is the classical Burgers equation (see, e.g., [14]). It can be linearized

through the Cole–Hopf transformation and possesses exact analytical solutions.

Travelling wave solutions are also known for the Richards’ equation. Their

structure depends on the model chosen to represent the soil water retention

function. Each model yields a different nonlinearity. In this paper we present

a comparative analysis of front wave solutions of Richards’ equation for typical

soil retention functions. By front solution we mean waves connecting two re-

gions where the water content is different. We consider the infiltration problem

where both the convective and diffusive terms are present and the imbibition

(or absorption [6]) problem where the convective term is absent, i.e. when water

diffuses in the horizontal direction without the effect of gravity.



The three well-known soil retention models known as Brooks–Corey, Mualem–

Van Genuchten and Storm–Fujita are used in our study. The first and third

models are applicable far and close to the water saturation respectively, whereas

the second one covers the whole range of water content. Despite having these

different ranges of applicability, these models exhibit qualitatively similar fea-

tures. Using a travelling wave ansatz we found front solutions for the infiltration

problem and in some special cases for the imbibition problem. Self-similar front

solutions were found only for the imbibition problem. A numerical study shows

that travelling fronts are stable for the infiltration problem whereas self-similar

fronts are stable for the imbibition problem.

After introducing the Richards equation and presenting the different models

of water retention functions in section 2, we calculate self-similar solutions of the

first and second kinds in section 3 and the travelling front solutions in section

4. The stability of the front solutions is investigated numerically in section 5

and we conclude in section 6.

2 Richards’ equation and different models of wa-

ter retention functions

Richards’ equation commonly used in the infiltration theory of unsaturated

porous media is a simple consequence of two basic equations. The first one is

the fundamental mass conservation law

∂θ

∂t
+ divVD = 0, (1)

where θ is the volumetric liquid content in the unit volume of a soil (the liquid

can be water, oil or something else), and VD is the Darcy flux or liquid flow

per unit area.

The second equation is a generalization of the empirical Darcy’s equation

relating the liquid flux, VD to the total energy potential H = ψ − z (see for

example the book [10])

VD = −K(θ)∇H = −K(θ)∇ψ +K(θ)∇z, (2)

where ∇z is the unit vector directed downward, in the positive direction of
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the axis z. The hydraulic conductivity K(θ) of an unsaturated porous medium

can be presented as a the product K(θ) = Kskr(θ), where Ks = κg/ν is the

saturated hydraulic conductivity in which κ is the medium permeability, g is

the acceleration due to gravity and ν is the liquid kinematic viscosity. Another

variable, kr(θ), is the relative hydraulic conductivity of the unsaturated medium,

it depends on the volumetric liquid content and satisfies 0 ≤ kr(θ) ≤ 1. Note

that the Darcy law was established originally for water percolation through

saturated soils. Later it was generalized to liquid flow through unsaturated

porous media with nonconstant hydraulic conductivity K(θ) depending on the

volumetric liquid content.

By substituting VD from Eq. (2) into Eq. (1) one obtains

∂θ

∂t
= div [K(θ)∇ψ −K(θ)∇z] . (3)

This is commonly known as Richards’ equation [7], while Buckingham [2] de-

rived it almost quarter of century earlier. In essence Eq. (3) is a Fokker–Plank

equation as was pointed out firstly by Philip [6].

In the present form the equation is not closed because one must specify

the function K(θ) and indicate the relationship between ψ and θ. To do that,

replace first the function θ by the normalized function Θ, called the degree of

liquid saturation and defined by (see, e.g., [10])

Θ ≡ θ − θr
θs − θr

, 0 ≤ Θ ≤ 1, (4)

where θr is the residual liquid content in the porous medium which exists prac-

tically always on walls of solid skeleton of a porous medium due to molecular

forces. A typical value of θr for water in a soil is about 0.01 [10]. Another

parameter θs is the saturated liquid content in a porous medium which corre-

sponds, roughly speaking, to the total volume of a void space in a unit volume

of a porous medium. In practice, however, all this volume is unachievable for

liquid because usually there is some amount of closed pores where liquid cannot

penetrate. The value θs depends on the porosity and typically ranges from 0.3

to 0.5 for different soils.

Now we consider the functions ψ(Θ) andK(Θ) which are known as soil water

retention curves. Two of these are widely used:

4



1. The Brooks and Corey relation

Θ(ψ) =

(

ψ

ψb

)−λ

, or ψ = ψbΘ
−1/λ, (5)

where the parameters ψb (the bubbling pressure) and λ (the pore size

distribution parameter) are two constants. Their typical range is −0.26 <

ψb < −0.073 and λ > 0 [10].

For the relative conductivity the following formula is usually used

kr(ψ) =

(

ψ

ψb

)−(2+3λ)

, or kr(Θ) = Θ
2+3λ

λ . (6)

2. The Van Genuchten (vG) retention relation

Θ(ψ) =

[

1 +

(

ψ

ψb

)c]−λ/c

, or ψ = ψb

(

Θ−c/λ − 1
)1/c

, (7)

where c is another fitting parameter. We use this form of vG relationship

which is called also a transitional Brooks and Corey (tBC) relationship

[10] but in essence it is equivalent to the original Van Genuchten formula

[13]. Note that the BC relationship can be treated as an extreme case of

the vG one when c→ ∞.

For the relationship between kr and Θ the Mualem’s formula [4] will be

used in the form

kr(Θ) =
√

Θ

[

1 −
(

1 − Θc/λ
)λ/c

]2

. (8)

The combination of the two last relationships we call the Mualem–Van

Genuchten model.

The dependencies ψ(Θ) and kr(Θ) for both considered models are shown in Figs.

1 and 2. As these dependencies are assumed known, one can rewrite Richards’

equation (3) in a closed form in terms of Θ (other forms of Richards equation,

e.g., in terms of ψ are also known and widely used [10]):

∂θ

∂t
= div [D(θ)∇θ −K(θ)∇z] , (9)

where D(θ) = K(θ)dψdθ is the soil liquid diffusivity [10] and can be treated as a

nonlinear diffusion coefficient. Since the functions K(Θ) and ψ(Θ) are given,

the diffusivity analytical function can be readily calculated,
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D(Θ) = K(Θ)
dψ

dΘ

dΘ

dθ
=

K(Θ)

θs − θr

dψ

dΘ
.

The corresponding expressions for two above mentioned and one more additional

model are as follows.

1. BC model:

D(Θ) = D0Θ
2+1/λ, where D0 = − Ksψb

λ(θs − θr)
. (10)

Note that it is assumed in soil physics that ψ and ψb are both negative,

so that D0 and D(Θ) are positive.

2. MvG model:

D(Θ) = D0

[

1 −
(

1 − Θc/λ
)λ/c

]2
(

1 − Θc/λ
)1/c−1

Θ1/λ+1/2
(11)

3. Another model which is also popular in the soil physics is called Storm–

Fujita model [10]. Its popularity is mainly conditioned by the exact ana-

lytical solvability of Richards’ equation [8], although it can really approx-

imate some kinds of soils for large degree of liquid saturation (see below).

The diffusivity function for this model is

D(Θ) = D0
a

(b− Θ)2
, (12)

where a and b = 1 + ε with ε � 1 are the empirical fitting parameters.

The entire Richards’ equation for this model will be presented below, and

the corresponding dependency for kr(Θ) can be reconstructed on the basis

of the given equation form:

kr(Θ) = 1 − Λ

E
+

Λ

1 + E − Θ
−

(

1 − Λ

E

1

1 + E

)

(1 − Θ), (13)

where Λ is the another fitting parameter and E = ε
θs−θr

. One can also

reconstruct the retention curve ψ(Θ) on the basis of given functions kr(Θ)

and D(Θ). We do not present this dependency here because it is fairly

complex and not interesting in the discussed context.

The dependencies D(Θ) for the three models discussed above are shown in

Fig. 3. As one can see from this figure, the diffusivity given by the MvG model
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with λ = 1 and c = 2 is very close to the diffusivity given by the BC model

for the same value of λ. Varying the parameter c in the vicinity of 2, one can

obtain very good agreement between these two models for Θ < 0.8. However for

large values of Θ > 0.8, the MvG model is preferable, as was mentioned above.

The SF model in contrast to the BC model approximates well the diffusivity

function for large values of Θ > 0.5.

We shall focus on one-dimensional processes when the liquid percolates into

a porous medium as an homogeneous plane wave moving either vertically down-

ward from the surface towards the bulk of medium or horizontally. The first

problem is called infiltration and will be treated further as a problem of water

propagation under the influence of gravity. The second problem is called the

imbibition, as suggested by R.E. Smith [10] and describes liquid percolation in

the horizontal direction without the influence of gravity force.

In one-dimensional case Eq. (9) has the form

∂θ

∂t
=

∂

∂x

[

D(θ)
∂θ

∂x
− sK(θ)

]

(14)

or equivalently in terms of function Θ (see Eq. (4))

∂Θ

∂t
=

∂

∂x

[

D(Θ)
∂Θ

∂x
− s

θs − θr
K(Θ)

]

, (15)

where the formal parameter s was inserted to switch easily from the imbibition

problem (s = 0) to the infiltration problem (s = 1). For the infiltration problem

the spatial variable x is a vertical coordinate while for the imbibition problem

it is a horizontal coordinate.

3 Self-similar front solutions of the Richards’

equation

Let us seek self-similar solutions to Eq. (15) in the form

Θ(t, x) = tαΦ(ξ), ξ = xtβ , (16)
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where α and β are some unknown exponents to be determined [1]. Equation

(15) in the new variables can be rewritten as

αΦ + βξ
dΦ

dξ
= t2β+1 d

dξ

[

D (tαΦ)
dΦ

dξ
− s

θs − θr
t−(α+β)K (tαΦ)

]

. (17)

According to the general theory of self-similar solutions [1], exponents α and

β should be chosen so that the resultant equation (17) does not depend on t

and depends only on the self-similar variable ξ.

3.1 Self-similar solutions of the first kind

The only possibility for Eq. (17) to be independent of t given arbitrary functions

D(Θ) and K(Θ) is to have s = 0, ie be in the imbibition case. Then one has

the solution α = 0 and β = −1/2. Eq. (17) then reduces to

d

dξ

[

D(Φ)
dΦ

dξ

]

+
ξ

2

dΦ

dξ
= 0. (18)

The corresponding self-similar solution in the form of a step-wise function was

obtained numerically by Philip [6] (see also [10]). The solution Θ(t, x) =

Φ(x/
√
t) represents the diffusion of a liquid in a porous medium without gravity

between two asymptotically constant values, Θ1 at plus infinity and Θ2 at minus

infinity. The limiting values may be any constants in the range 0 ≤ Θ1,Θ2 ≤ 1.

A similar solution can be obtained for other models of the retention function.

It is of interest to compare the structures of self-similar step-wise solutions for

the two limiting cases of small and large liquid saturation where the applicable

models are BC and SF, respectively. The corresponding equations are:

BC model:
d2Φ3+1/λ

dξ2
+

3 + 1/λ

2D0
ξ
dΦ

dξ
= 0; (19)

SF model:
d2

dξ2
1

b− Φ
+

1

2D0a
ξ
dΦ

dξ
= 0. (20)

For the front solutions, the following boundary conditions were assumed:

Φ(ξ = −∞) = Φl, Φ(ξ = +∞) = Φr. Because of the structure of the sys-

tem, these conditions imply dΦ/dξ = 0 for ξ → ±∞. For the calculation, the

boundary values Φl and Φr were prescribed at some large finite values of ξ.
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To solve this boundary value problem numerically we used the Matlab bvp4c

solver [11] based on collocation. The results obtained are shown in Fig. 4. The

panel labeled (a) shows the front for the BC model. Note how the fronts get

wider as the difference Θl − Θr increases. They get very steep so that up to

30000 collocation points were needed for a relative tolerance 10−4. For the SF

model shown in panel (b), the fronts seem to have a constant width and they

are smoother.

3.2 Self-similar solutions of the second kind

When the functions D(Θ) and K(Θ) in Eq. (15) are of power type, i.e., they are

self-similar themselves, one can remove the dependency on t in Eq. (17). This

is the case for the BC model. Substituting the D(Θ) and K(Θ) functions of the

BC-model Eq. (10) and (6) into Eq. (17) one can reduce this equation to the

following form

αΦ + βξ
dΦ

dξ
= t2β+1+2α+α/λΦ2+1/λ d

dξ

[

D0
dΦ

dξ
− sK

3+2/λ
s

θs − θr
tα/λ−βΦ1+1/λ

]

.

(21)

This equation is independent on t if the exponents α and β are

α = − λ

3 + 2λ
, β = − 1

3 + 2λ
. (22)

Since α < 0 this solution gradually decays with time as follows from Eq. (16),

Θ(t, x) ∼ t−
λ

3+2λ . Such behavior is meaningful for a pulse-type solution rather

than for a front-type because a uniform time decay of a constant liquid content

at different asymptotics is unlikely from the physical point of view. A conse-

quence of Eq. (15) is that for pulse-type solutions there is a “mass” conservation

integral:

M =

∞
∫

−∞

Θ(t, x) dx = const. (23)

(this integral does not make sense for front-type solutions since it is infinite in

that case). Substituting the solution (16) into this equation yields

∞
∫

−∞

Θ(t, x) dx = tα
∞
∫

−∞

Φ(xtβ) dx = tα−β
∞
∫

−∞

Φ(ξ) dξ = const. (24)
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This condition can be satisfied only if α = β, which is possible when λ = 1.

With this value of λ and defining the new independent variable χ = ξ/
√
D0,

Eq. (21) finally reads:

5Φ3d
2Φ

dχ2
+

d

dχ

(

χΦ − s√
D0

K5
s

θs − θr
Φ5

)

= 0. (25)

For the imbibition problem, s = 0, this equation further simplifies:

5Φ3 d
2Φ

dχ2
+

d

dχ
(χΦ) = 0. (26)

Numerical solutions to this equation are shown in Fig. 5a for three values of

the parameter A0 which determines the function maximum. This parameter is

directly linked to the total “mass” of the solutionM and depends on the amount

of liquid injected into the soil at a certain location. Equation (26) is invariant

with respect to the transformation χ → −χ and its solutions are symmetric

with respect to the vertical axis. The asymptotics at 0 and ∞ of such solutions

can be readily calculated, they are:

Φ(χ) ≈ a0 −
χ2

10a2
0

+
χ6

5000a8
0

+
9χ8

350000a11
0

+
23χ10

10500000a14
0

+ . . . ; (27)

Φ(χ) ≈ b−1

χ
+

2b4−1

χ6
+

48b7−1

χ11
+ . . . (28)

As usually happens with self-similar solutions of this sort (see, [1]), the solution

in terms of Θ(t, ξ), Eq. (16) diverges when t → 0. Actually, the self-solution

makes sense in the asymptotic, when t is large enough and function Θ(t, ξ)

describing liquid content in the soil becomes less than 1.

For the infiltration problem, s = 1, changing the variables in Eq. (21):

χ =
ξK3

s

D
4/5
0 (θs − θr)3/5

, Ψ =
ΦK2

s

D
1/5
0 (θs − θr)2/5

(29)

leads to the equation (one should bear in mind that α = β = −1/5 and λ = 1):

5Ψ3 d
2Ψ

dχ2
− 10Ψ4dΨ

dχ
+
d (χΨ)

dχ
= 0. (30)

Numerical solutions to this equation are shown in Fig. 5b for the same three

values of the parameter A0 as in Fig. 5a. The asymptotics of these solutions
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are:

Ψ(χ) ≈ a0 −
χ2

10a2
0

− χ3

15a0
− χ4

30
+

1 − 5a5
0

375a4
0

χ5 + . . . ; (31)

Ψ(χ) ≈ b−1

χ
+

2b4−1(1 + b1)

χ6
+

4b7−1(12 + 17b−1 + 5b2−1)

χ11
+ . . . (32)

In terms of the physical variable Θ(ξ, t) the liquid content in the medium both for

the imbibition and infiltration problems slowly decays with time Θ(ξ, t) ∼ t−1/5,

and the characteristic size of the domain occupied by the liquid, Λ, gradually

increases, Λ ∼ t1/5.

4 Travelling front solutions of the Richards’ equa-

tion

Consider now travelling wave solutions of Eq. (15) in the form Θ(t, x) = Θ(x−
V t) ≡ Θ(ζ), where V is the velocity of the stationary wave. Note that travelling

wave solutions can be also treated as self-similar solutions [1]. Indeed, making

a transformation t = log τ and x = logχ the above solution can be presented in

the form Θ(τ, χ) = Θ
[

log
(

χτ−V
)]

. We use however the traditional approach.

For such solutions Eq. (15) may be integrated once resulting in

dΘ

dζ
=

s

θs − θr

K(Θ)

D(Θ)
+
C − VΘ

D(Θ)
, (33)

where C is a constant of integration. The value of this constant as well as the

wave velocity V can be determined from the boundary conditions. Assuming

that the solution has the form of a shock wave with constant values at plus and

minus infinity, Θ(∞) = Θ1, Θ(−∞) = Θ2 (0 ≤ Θ1, Θ2 ≤ 1) and dΘ
dζ = 0 at

x = ±∞, one can readily find

V =
s

θs − θr

K(Θ2) −K(Θ1)

Θ2 − Θ1
, (34)

C =
s

θs − θr

Θ1K(Θ2) − Θ2K(Θ1)

Θ2 − Θ1
(35)

This travelling wave solution corresponds to the heteroclinic orbit connecting

the two fixed points Θ = Θ1 and Θ = Θ2 on the phase plane (Θ′, Θ) where
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Θ′ ≡ dΘ
dζ . Note that both constants V and C are independent of the diffusivity

function D(Θ), they only depend on the convection function K(Θ). On the

other hand the profile of the water front does depend on D(Θ). Also note that

from these equations, both constants V and C are formally zero if s = 0, i.e.,

for the imbibition problem. In this case Eq. (33) is degenerate and must be

reconsidered separately for the shock wave solutions.

4.1 Steady-state solutions of the imbibition problem

For this particular case, Eq. (33) reduces to

dΘ

dζ
=
C − VΘ

D(Θ)
. (36)

Solutions to this equation can be analyzed by means of the phase plane. For

the BC model this equation takes the form:

Θ′ =
C1 − Θ

Θ2+ 1
λ

, (37)

where C1 = C/V . It is easy to see that for 0 < C1 < 1, there is a fixed point

of this equation, Θ = C1 and it is the only one (we recall that the variable Θ

has a physical meaning only within the interval 0 ≤ Θ ≤ 1). Therefore no front

solution exists for this model.

For the other models, MvG and SF, it is possible to get another fixed point

Θ2 which corresponds to D(Θ2) = ∞. In particular, for the MvG model Eq. (33)

reduces to

Θ′ =
(C1 − Θ)Θ1/λ+1/2

[

1 −
(

1 − Θc/λ
)λ/c

]2
(

1 − Θc/λ
)1/c−1

. (38)

This equation can have two stationary points in the physical range of the variable

Θ. The first point is the same as above, i.e., Θ = C1 if 0 < C1 < 1, and the

second point is Θ = 1 if parameter c > 1. This difference between equations

(37) and (38) is not surprising because, as was mentioned above, the BC model

does not work correctly in the vicinity of the point Θ = 1. The phase portrait

of Eq. (38) is shown in Fig. 6a.

The SF model, contrarily to the BC model, is mainly applicable in the

vicinity of the point Θ = 1 and is unapplicable for Θ < 0.5. Hence, one can
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expect that it gives qualitatively the same results as the MvG model. The

corresponding equation is much simpler for this case:

Θ′ =
(C1 − Θ)(b− Θ)2

a
. (39)

The phase portrait of this equation is shown in Fig. 6b. For this case the

analytical solution describing the shock-wave profile can be obtained in the

implicit form:

x− x0 =
a

(b− C1)
2

(

ln
b− Θ

Θ − C1
− b− C1

b− Θ

)

. (40)

Figure 7 illustrates shock-wave profiles for three values of constant C1. The

peculiarity of these solutions is that the limiting value of variable Θ at the

minus infinity, Θ(−∞) = b ≈ 1 that means that the soil is completely liquid

saturated there. The other asymptotic value at the plus infinity can be arbitrary,

Θ(∞) = C1 ≡ C/V . Thus, a steady-state shock-wave solution can exist for the

imbibition problem only when at minus infinity the soil is completely saturated.

The wave profile is almost antisymmetrical with respect to its midpoint when

the difference in soil saturations at plus and minus infinities are close to each

other. Otherwise the profile is asymmetrical (compare, e.g., the wave profiles

shown in Fig. 6 for C1 = 0.9 and C1 = 0.7). The wave velocity V and front

thickness d ≡ |D0|/V remain undefined even for the given limiting values of

shock asymptotics, Θ(−∞) = 1 and Θ(∞) = C1. Note that the water front

profile for small C1 qualitatively agrees with that described by the self-similar

solution presented in [10] and in Fig. 4.

4.2 Steady-state solutions of the infiltration problem

Let us consider now the infiltration problem in the vertical direction. The gov-

erning equation for steady-state waves is Eq. (33) with s = 1. The substitution

of expressions (34) and (35) for V and C into Eq. (33) yields

dΘ

dζ
=

1

(θs − θr)D(Θ)

[

K(Θ) − K(Θ2) −K(Θ1)

Θ2 − Θ1
Θ +

Θ1K(Θ2) − Θ2K(Θ1)

Θ2 − Θ1

]

.

(41)

This equation has shock-type solutions for any values of the variable Θ at plus

and minus infinities within the range 0 ≤ Θ1,Θ2 ≤ 1. These limiting values, Θ1

and Θ2, determine the velocity of the moving front in accordance with Eq. (34).
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Let us consider the phase plane of this equation for two limiting cases, the

BC and SF models, which are relatively simple for the analysis. Substituting

the corresponding functions D(Θ) and K(Θ) into equation (34), one obtains the

phase portraits for the BC and SF models shown in Fig. 8. Phase trajectories

are not symmetric and do not follow the parabolic shape that is typical for the

Burgers equation [14] (for this equation K(Θ) = Θ2). As one can see from

Fig. 8a, the quadratic approximation of the nonlinear function in the right-

hand side of Eq. (41) is appropriate only for very close located fixed points

when (Θ2 − Θ1)/Θ1 � 1. However, qualitatively the shock-wave profiles of

Eq. (41) are similar to the classical Burgers solutions. They are shown in Fig. 9.

Shock-wave solutions correspond to the heteroclinic orbit connecting the

points (Θ1, 0) and (Θ2, 0) in the phase plane. One can compute such orbits by

solving the ordinary differential equation (41) with an initial condition which is

very close, e.g., to (Θ2, 0). Because of the local existence and uniqueness of the

solution, the representative point evolves to (Θ1, 0). Such solutions correspond

to the moving moisture fronts downward from the wet towards the relatively

dry soil.

5 Stability of front solutions of the Richards’

equation

In this section we examine numerically the stability of the self-similar and trav-

elling front solutions that we found in the previous sections. To do this we solve

the Richards partial differential equation (15) numerically. As a first step it is

convenient to rewrite it in the form of a conservation law and integrate it then

on small intervals on which the solution is assumed to be constant. This is in

the spirit of the finite volume method; more details are given in the Appendix.

Richards’ equation (15) was solved on a very large domain whose length 2l is

much greater than the characteristic front size d (l ∼ 103 · d). Dirichlet bound-

ary conditions Θ(x = −∞) = Θl and Θ(x = ∞) = Θr were used. The initial

condition was chosen in the form

Θ(x, t = 0) = Θl −
Θl − Θr

2

(

1 + tanh
x− x0

w0

)

, (42)

14



where w0 is the width of the front.

For the infiltration problem our calculations show that numerical solutions

always relaxed to the steady-state travelling front solution given by Eq. (41).

Figure 10 presents Θ(x, t) as a function of the normalized coordinate ζ =
Ks

D0(θs−θr)x for the BC model with a typical initial condition Θ2 = 0.8, Θ1 = 0.1

and w0 = 2 at successive times from t = 0 to t = 80. As one can see, the

perturbation front sharpens and quickly stabilizes to the steady-state profile

which is also shown in the figure (the line labelled “Analyt”). In accordance

with the theoretical prediction, the profile is not symmetrical; it has a smoothed

edge at the top and almost right-angle edge at the bottom. The front velocity

determined from the numerical data Vn ≈ 0.47 agrees well with the theoretical

value for this case Vt = 0.468.

The stability of the front profile was confirmed for all the other values of Θ1

and Θ2 that were investigated and also for soil retention functions different from

the Brooks and Corey model. As an example, Fig. 11 shows the formation of

steady-state profiles from an initial step-wise perturbation for the MvG model

with different values of Θ2. Again the front velocity obtained numerically agrees

well with the theoretical values and as expected it increases when |Θ2 − Θ1|
increases. For the case shown in Fig. 11a), Vn ≈ 0.189, whereas Vt = 0.187; for

the case shown in Fig. 11b), Vn ≈ 0.436, whereas Vt = 0.434 and for the case

shown in Fig. 11c), Vn ≈ 0.815, whereas Vt = 0.813. Front profiles look more

symmetrical for the MvG model than for the BC model, especially when Θ2 is

closer to Θ1 (cf. Fig. 11 with Fig. 9a). For the same limiting values of liquid

saturation, the MvG model provides smoother and wider shock-wave profiles

than the BC model.

For the imbibition problem there is no convective term in the Richards equa-

tion (15) due to s = 0. The equation is then a nonlinear diffusion equation.

Figure 12a shows the typical evolution of the initial condition (42) as a func-

tion of x for six successive times for the SF model. The boundary values are

Θ2 = 0.9 and Θ1 = 0.75. As expected, the front does not translate and its

width increases continuously with time. When these profiles are plotted against

the self-similar variable ξ = (x− 200)/
√
t, all plots reduce to a single one. This

is shown in Fig. 12b. This plot is in excellent agreement with the self-similar
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solution of the first kind obtained in subsection 3.1. Similar results have been

obtained for the BC and MvG models so this seems to be a general result.

6 Conclusion

We analyzed and studied numerically water front propagation in a soil both

with and without the effect of gravity. The corresponding infiltration and im-

bibition problems are described by the Richards’ convection-diffusion equation.

Three different analytical approximations of the soil retention function, the

Brooks–Corey, the Mualem–Van Genuchten and the Storm–Fujita models were

examined and the results obtained were compared.

For the infiltration problem we showed that front solutions always exist.

Their speeds were calculated and their stability was proven numerically. All

soil models show stability of the moving wetting fronts. This seems to be a

general result for the monotonic dependency of soil conductivity K(Θ).

For the imbibition problem the self-similar front solutions were found for all

soil models as functions of the reduced variable x/
√
t. The results obtained were

compared with the known Philip’s solution [6, 10]. In all numerically studied

cases it was observed that any initial profile between two constant values Θ2

and Θ1 tends eventually to the self-similar front indicating its stability.

In addition to that, pulse-type self-similar solution of the second kind was

discovered for the BC model both for the imbibition and infiltration cases. Such

solution can be treated as an intermediate asymptotic [1] for the localized initial

perturbations occupying a finite domain, e.g., wetted soil layer located at certain

depth initially and then, diffusing either horizontally or vertically.

The results on travelling and self-similar fronts are important for fundamen-

tal science as well as applications because Richards’ equation is a generalization

of Burgers equation. The results are also highly relevant for soil physics because

they allow one to estimate the time for a soil to reach a certain water content.

This time is given by the slope of the conductivity profile for the infiltration

problem. For the imbibition case the time is given by the diffusion constant and

can be easily estimated.
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7 Appendix: Numerical procedure for solving

1D Richards’ equation

To integrate numerically 1D Richards’ equation we write it as a conservation

law.
∂Θ

∂t
=

∂

∂x

[

D(Θ)
∂Θ

∂x
− s

θs − θr
K(Θ)

]

, (43)

which we integrate over reference intervals in space following the finite volume

procedure. We assume the solution to be constant on those intervals and equal

to the value at the center of interval. The time advance is done with a Runge–

Kutta 4-5 ordinary differential equation solver. We assume Dirichlet boundary

conditions on the edges of the numerical domain [−l, l] so that Θ(x = −l, t) = Θl

and Θ(x = l, t) = Θr.

The resulting discrete equations for a given node n center of a reference

interval are

hΘ̇n =
[

D(Θ)Θx −K(Θ)
]xn+h/2

xn−h/2

≈ D

(

Θn+1 + Θn

2

)

Θn+1 − Θn

h
−D

(

Θn + Θn−1

2

)

Θn − Θn−1

h
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− s

θs − θr

[

K

(

Θn+1 + Θn

2

)

+K

(

Θn + Θn−1

2

)]

. (44)

The numerical scheme is stable for δt/h2 < 1, typically we have chosen

2l = 300 and h = 0.3. The time step is chosen to that the tolerance for the

truncation error is smaller than 10−5 so that δt < 0.1.

We have first tested this scheme against Burgers equation for which D(Θ) ≡
D just a constant, and K(Θ) ≡ Θ2. Numerical results were compared with

the exact solution describing shock wave propagation [14]. With the indicated

values of D(Θ) and K(Θ), Richards’ equation reduces to the following Burgers

equation

Θt = ΘΘx +DΘxx, (45)

which can be transformed by means of Hopf–Cole transformation Θ = −2Dφx/φ

to the usual heat equation for function φ [14]

φt = Dφxx. (46)

Elementary solution of this equation φ = 1+ekx−ωt gives the two parametric

shock solution of Burgers equation:

Θs(x, t) = −2Dk
ek(x−x0)−Dk

2t

1 + ek(x−x0)−Dk2t
, (47)

which separates a region where Θ = 0 for x = −∞ from the region where

Θ = −2Dk for x = +∞ and moves with the velocity Vsh ≡ ω/k = Dk. A

characteristic shock thickness is 1/k.

It has been tested and verified that any stepwise initial condition between

Θ = 0 and Θ = Θr tends to the shock-type travelling wave solution mowing

with the corresponding velocity Vsh = −Θr/2.
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Figure 1: Plot of the normalized pressure head, ψ/ψb vs the degree of liquid

saturation in a porous medium, Θ, for the BC model with λ = 1.0, and the vG

model with the same λ and different values of c: curve vG1 – c = 0.5; curve

vG2 – c = 1 and curve vG3 – c = 2.
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Figure 2: Plot of the relative hydraulic conductivity, kr, vs the degree of liquid

saturation in a porous medium, Θ, for the BC model with λ = 1.0, MvG model

with the same value of λ and different c: curve MvG1 – c = 0.5; curve MvG2 –

c = 1 and curve MvG3 – c = 2, and SF model with Λ = 0.128 and E = 0.1.
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Figure 3: Plot of the normalized diffusivity, D/D0, vs the degree of liquid

saturation in a porous medium, Θ for the BC model (straight line) with λ = 1.0,

the MvG model with the same λ and different values of c: straight line MvG1

– c = 1; line MvG2 – c = 2 and line MvG3 – c = 5, and the SF model with

a = 0.025 and b = 1.1.
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Figure 4: Front-type self-similar solutions for the imbibition problem for two

different soil models: a) – BC model with λ = 1, b) – SF model with b =

1.5, a = 0.025. In each plot three different couples (Θl,Θr) are shown. The

parameter D0 = 1
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Figure 5: Self-similar solutions of the second kind for the BC model with λ = 1

(only the right-halves of symmetric functions are shown). a) Imbibition problem;

b) infiltration problem (the horizontal scale is four times stretched). Different

lines correspond to different amplitudes of the functions Φ and Ψ: 1 – A0 = 0.5,

2 – A0 = 1.0, 3 – A0 = 2.0.
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Figure 6: Phase portraits for the travelling wave ODEs for the imbibition prob-

lem: a) – Eq. (38) with c = 2 (MvG model) and b) – Eq. (39) with a = 0.025 and

b = 1 (SF model). The dots indicate the equilibrium positions (Θ = C1,Θ
′ = 0)

for different values of the constant C1. The corresponding orbits are labelled

with C1.
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Figure 7: Travelling wave solutions for the imbibition problem given by Eq. (36)

for the SF model and three values of the constant C1 = 0.9 (line 1), 0.8 (line 2)

and 0.7 (line 3). Other parameters are a = 0.025, b = 1.
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Figure 8: a) The phase portrait of Eq. (41) for the BC model. One equilib-

rium point, Θ1 = 0.1, is fixed for simplicity and another one, Θ2, varies. The

parabolic dashed line corresponds to the Burgers model. b) Phase-portrait for

the SF model. Now the equilibrium point Θ2 = 1 is fixed and another equilib-

rium point, Θ1, varies.
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Figure 9: a) Travelling front profiles for the BC model for Θ1 = 0.1 and Θ2 =

0.25, 0.5 and 0.8. b) The same for the SF model for Θ2 = 1 and Θ1 = 0.9, 0.8

and 0.7.
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Figure 10: Travelling front solution for the BC model: evolution of an initial

perturbation Θ(x, t) given by Eq. (42) for successive times t = 0, 10, 20, . . . , 80.

The analytical solution Eq. (40) is the line labelled “Analyt”.
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Figure 11: Travelling front solutions for the MvG model for Θ1 = 0.1 and a)

Θ2 = 0.25; b) Θ2 = 0.5; c) Θ2 = 0.8. The plots show the evolution of an initial

perturbation Θ(x, t) given by Eq. (42) for successive times t = 0, 24, 48, . . . for

panel a) and t = 0, 10, 20, . . . for panels b) and c). The first curve starting

from the left in each frame is the initial condition. The dotted lines show the

corresponding travelling front solutions.
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Figure 12: a) Evolution of the initial perturbation given by Eq. (42) for suc-

cessive times: t = 0 (line 1), 400, 800, . . . , 2400 for the imbibition case and

the SF model with Θl = 0.9 and Θr = 0.75 (a = 0.025, b = 1.001). b) Plots of

the solution Θ(x, t) shown in Fig. 12a as a function of the self-similar variable

ξ = x−200√
t

. The solid line shows the solution for t = 400 and the dotted lines

with different symbols show solutions for other times. The self-similar analytic

solution is also plotted and coincides with the numerical solution.31


