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Abstract

This paper is concerned with the existence and uniqueness of the solution for the stochastic
fast logarithmic equation with Stratonovich multiplicative noise in Rd for d > 3. It provides an
answer to a critical case (morally speaking, corresponding to the porous media operator ∆Xm

for m = 0) left as an open problem in the paper Barbu-Röckner-Russo [11]. We face several
technical difficulties related both to the degeneracy properties of the logarithm and to the fact
that the problem is treated in an unbounded domain. Firstly, the order in which the approx-
imations are considered is very important and different from previous methods. Secondly, the
energy estimates (see eq. 33) needed in the last step can only be achieved with a well-chosen
Stratonovich-type rectification of the noise.
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2020 MSC: 76S05, 60H15, 35K55.

1 Introduction

Let us consider a nonlinear diffusion process of the following form

dX (t) = ∆ ln (X (t)) dt (1)

where X (t, ξ) is the positive density for the time - space coordinates (t, ξ) . This equation describes
the process that has been observed by experiments when using Wisconsin toroidal octupole plasma
containment device (see [1]). Kamimura and Dawson predicted in [20] this time evolution for the
cross-field conservative diffusion of plasma including mirror effects.
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The same equation is relevant for the expansion of a thermalized electron cloud and arises in
studies of the central limit approximation to Carleman’s model of the Boltzmann equation (see [13]
and [21]) as well. The asymptotic behaviour of this equation has been studied in [19].

Most of the natural phenomena exhibit some form of variability which cannot be captured by
using purely deterministic approaches. More accurately, natural systems could be represented as
stochastically perturbed models and the deterministic description can be considered as the subset
of the pertinent stochastic models.

The purpose of this paper is to analyse such equations within the framework of stochastic
evolution equations with multiplicative noise, where the dynamics (1) is the underlying motivating
example.

Let us now introduce the suitable framework for this problem. We consider the Stratonovich
stochastic differential equation (in some sense to be made precise later on) on the Euclidean space
Rd, for some d ≥ 3, of the form{

dXt −∆ lnXtdt = Xt ◦ dWt, (t, ξ) ∈ [0, T ]× Rd,
X0 = x.

(2)

The unknown Xt = X(t, ξ) is a real-valued random field on a standard complete, right-continuous
probability basis {Ω,F , {Ft}t ,P}, andWt is related to a H −1-valued QWiener process associated
with the filtration {Ft}t≥0, where Q is a non negative trace class operator on H −1. For more details
and the properties of the space H −1 see the next section and Section 6.2 of [6].

The stochastic theory of nonlinear equations has been, recently, intensively studied for drift
coefficients of the form −∆Ψ, where Ψ : R→ R defined by Ψ (r) = rm is a maximal monotone
operator with additive and multiplicative noise.

In the case m > 1, the corresponding equation describes the slow diffusions (dynamics of fluids
in porous media) and their existence, uniqueness and positivity and behavior of the solution have
already been studied in [7], [9], [16], [22], [24] for the stochastic case. For the deterministic case see
[2] and [25].

The case m ∈ (0, 1) is relevant in the mathematical modeling of dynamics of an ideal gas in a
porous media. For the self organized criticality case see [14], [10], [17]. Finite time extinction is
studied in 3 dimensions for m ∈

[
1
5 , 1
)
in [5]. See also [8].

The stochastic counterpart was studied, for m ∈ (−1, 0) and multiplicative Itô noise structure
in [15].

For the case m ≤ −1, it has been proved that, even in the deterministic case, there is no solution
with finite mass (see [25]).

The case Ψ (r) = log r was studied for a multiplicative noise in a bounded domain in [4]. Note
that for positive solutions, it can be seen as morally corresponding to the situations m = 0, in
div (rm−1∇r) = 1

m∆ (rm) since div (r−1∇r) = ∆ (ln r) .
Concerning the stochastic porous media equation in an unbounded domain, the only known

result which is known is in [11] and treats the case of slow diffusion with a multiplicative Itô noise.
Our work which treats the fast logarithmic diffusion in an unbounded domain has several tech-

nical difficulties which will be treated by using several specific approximation.
More precisely, the first main set of difficulties comes from the properties of the logarithm. We

have a problem due to the fact that zero does not belong to D(ln) and we can not assume that
D(ln) = R. Another problem which is specific to the logarithm diffusion is the fact that we can
not assume any polynomial growth hypothesis, nor the strong monotonicity assumption. All those
technical difficulties impose the choice of a particular form of the first approximation in λ and the
use of a Stratonovich multiplicative noise.
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The second main set of difficulties comes from the unboundedness of the domain which implies,
among other problems, the impossibility to use the Poincaré inequality. This technical problem
impose the use of a second approximation in ν.

Finally a third approximation in ε is necessary to get some estimates in appropriated spaces.
One needs to notice also that the order of passing to the limit for the three approximations is

rigorously chosen. More precisely one needs to pass to the limit in ν before λ in order to avoid that
Ψλ(0) converges to ∞. This is an important technical difficulty with respect to the case of a slow
porous media diffusion.

The organization of the paper is the following. After an introduction, in the second section we
have some notations and the technical setting of the problem. The third section is concerned with
the definition of the solution and the existence and uniqueness result. The fourth section gives the
proof of the main results in several steps corresponding to the approximations presented above.
Finally we have an appendix with some technical points.

For reader’s convenience we shall recall some basic notions and settings in the second section.

2 Notations and setting

2.1 Functional Spaces

Throughout the paper we are going to adopt the following notations.

1. the underlying space will be a d ≥ 3-dimensional Euclidean space Rd;

2. the fundamental functional space is L2
(
Rd
)

= L2
(
Rd;R

)
of real-valued Lebesgue-square

integrable functions. Its norm is ‖·‖L2(Rd);

3. in general, for 1 < p < ∞, we let Lp
(
Rd;Rd′

)
stand for the space of Rd′-valued Lebesgue-

p-power integrable functions. Its norm is denoted by ‖·‖Lp(Rd;Rd′). Whenever d′ = 1, we

designate the space by Lp
(
Rd
)
the corresponding space of real-valued functions;

4. we will often drop completely the dependency on the underlying Euclidean spaces e.g. Rd;

5. the norms for Lp-spaces will be sometimes shortened to p i.e. ‖·‖p. This will also apply to
the duality product 〈·, ·〉p,q when 1

p + 1
q = 1 and the Hilbert product 〈·, ·〉2 = 〈·, ·〉2,2;

6. The space H1
(
Rd
)

= H1
0

(
Rd
)
is the inhomogeneous Sobolev space on Rd (functions belong-

ing, together with their first-order partial derivatives, to L2
(
Rd
)
). Its norm is

‖u‖H1(Rd) := ‖(u,∇u)‖L2(Rd;R1+d) =

(∫
Rd

(
u2(ξ) + |∇u(ξ)|2

)
dξ

) 1
2

.

7. the dual space of H1 (with pivot space L2
(
Rd
)
) is denoted by H−1

(
Rd
)
(or simply H−1);

8. the space H s
(
Rd
)
for s ∈ R is the homogeneous Sobolev space of (real-valued) tempered

distributions u over Rd having an L1
loc

(
Rd
)
Fourier distribution û and such that

‖u‖2s = ‖u‖2
H s(Rd) :=

∫
Rd
|ξ|2s |û(ξ)|2 dξ <∞.
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9. For any s ∈ R, CP([0, T ]; H s) denotes the space of all H s-valued (Ft)t progressively mea-
surable processes X : Ω× [0, T ]→H s such that

E
∫ T

0
‖X(t)‖2H sdt < +∞,

and for all compacts O, the realization of X on O has a continuous modification in
C([0, T ];L2(Ω,H s(O))).

REMARK 1. 1. The space H1 is associated with the space Fe defined on [24, page 129] and
associated to the operator L = 4 with the corresponding domain in L2

(
Rd
)
. The accompany-

ing quadratic form E (u, v) :=
〈√
−Lu,

√
−Lv

〉
L2(Rd) renders an extended transient Dirichlet

space structure such that one has

V := L2
(
Rd
)
⊂ H−1 ⊂ V ∗ continuously and densely. (3)

(cf. [24, page 131], see also the explicit example [24, page 129, paragraph preceding Eq. (3.1)].)

2. The space H s
(
Rd
)
is a Hilbert space provided s < d

2(cf. [3, Prop. 1.34]).

3. Provided that |s| < d
2 , the spaces H s

(
Rd
)
and H −s (Rd) are dual (cf. [3, Prop. 1.36]).

〈u, v〉(H s(Rd),H −s(Rd)) =

∫
Rd
u(ξ)v(ξ)dξ, ∀ (u, v) ∈H s

(
Rd
)
×H −s

(
Rd
)
. (4)

4. The following embeddings hold true (for 0 ≤ s < d
2 , cf. [3, Theorem 1.38, Corollary 1.39]).

H s
(
Rd
)
⊂ L

2d
d−2s

(
Rd
)
, L

2d
d+2s

(
Rd
)
⊂H −s

(
Rd
)

continuously. (5)

Embedding constants will be denoted by C
H s⊂L

2d
d−2s

. They are assumed to be at least 1 such
that

‖u‖
L

2d
d−2s (Rd)

≤ C
H s⊂L

2d
d−2s
‖u‖H s(Rd) .

An explicit expression of such constants can be found in [3, Theorem 1.38] (last line of the
proof).

5. In the case when s = 1, a more convenient expression of ‖·‖H 1(Rd) is given by

‖u‖H 1(Rd) = ‖∇u‖L2(Rd;Rd) .

2.2 Basis and Wiener Process

One recalls that S0

(
Rd
)
, the space of smooth functions (belonging to the Schwartz space) such

that the Fourier transform of which vanishes near origin. It is known that S0(Rd) is dense in H −1

(see, for example, [3, Prop. 1.35]). As a consequence, one is able to pick an orthonormal basis for
H −1 whose elements ek ∈ C1

(
Rd
)
∩H −1 with its first order derivatives in Ld

(
Rd
)
(to see the

required integrability, just recall the linear growth on such smooth functions). In particular, for
every k ≥ 1,

µ′k := ‖ek‖2L∞(Rd) + ‖∇ek‖2Ld(Rd;Rd) + 1 <∞.
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Next, let us consider a sequence (µk)k≥1 ⊂ RN
+ such that∑

1≤k
µkµ

′
k =

∑
1≤k

µk

(
‖ek‖2∞ + ‖∇ek‖2d + 1

)
<∞. (6)

To this sequence µk, we associate an H −1-valued Q Wiener process, i.e., Q is a non-negative
trace-class operator such that Qek = µkek on H −1. The formal representation yields WQ(t),

WQ(t) =
∑
k≥1

√
µkβk(t)ek, t ∈ [0, T ] ,

for some sequence of independent real-valued Brownian motions {βk}k defined on a common space
(Ω,F ,P). For more details see Remark 3.3 from [11] or Section 2.3 from [23].

2.2.1 On H−1
(
Rd
)
With Standard and Modified Norms

1. The space H−1
(
Rd
)
is usually endowed with the norm

‖u‖2
H−1(Rd) :=

∫
Rd

(
1 + |ξ|2

)−1
|û(ξ)|2 dξ,

or, again, ‖u‖2
H−1(Rd) =

∥∥∥(I−4)−
1
2 u
∥∥∥2

L2
. Equivalently, for ν > 0, one can consider

‖u‖2
H−1
ν (Rd) :=

∥∥∥(νI−4)−
1
2 u
∥∥∥2

L2
;

2. The process W as a Brownian motion on H−1 and Itô differentials

• One considers J : Q
1
2

(
H −1

)
→ H−1 given by J

(
Q

1
2u
)

:=
∑

k≥1

√
µk 〈u, ek〉H −1 ek.

One easily notes this to be a Hilbert-Schmidt embedding.∑
k≥1

∥∥∥J(Q
1
2 ek)

∥∥∥2

H−1
=
∑
k≥1

µk ‖ek‖2H−1 ≤
∑
k≥1

µk ‖ek‖2H −1 <∞,

the last but one inequality being a simple consequence of the continuous embedding
H −1 ⊂ H−1 and equality of pair product.

• The noise coefficient is regarded for given x ∈ H−1 as σ(x) : Q
1
2 H −1 → H−1 defined

by σ(x)
(
Q

1
2u
)

:=
∑

k≥1

√
µk 〈ek, u〉H −1 ekx, which is well-defined, since, whenever φ ∈

C∞0
(
Rd
)
with ‖φ‖H1 ≤ 1, a simple computation then yields

‖ekx‖H−1 = sup
{
〈x, ekφ〉(H−1,H1) : ‖φ‖H1 ≤ 1

}
≤ ‖x‖H−1 sup

‖φ‖H1≤1
‖ekφ‖H1 .

Here,

‖ekφ‖2H1 = ‖ekφ‖2L2 + ‖∇ (ekφ)‖2L2 ≤
(
‖φ‖22 ‖ek‖

2
∞ + ‖∇ek‖2Ld ‖φ‖

2

L
2d
d−2

+ ‖ek‖2∞ ‖∇φ‖
2
2

)
≤ ‖ek‖2∞ + ‖∇ek‖2Ld ‖φ‖

2

L
2d
d−2
≤ ‖ek‖2∞ + C2

H1⊂L
2d
d−2
‖∇ek‖2d ,
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(the latter inequality follows from the continuous embeddings H1 ⊂H 1 ⊂ L
2d
d−2 ) which

amounts to
‖ekx‖2H−1 ≤ ‖x‖2H−1

(
‖ek‖2∞ + C2

H1⊂L
2d
d−2
‖∇ek‖2d

)
.

As a consequence, σ(x) ∈ L
(
Q

1
2 H −1;H−1

)
. Moreover,

‖σ(x)‖2
L2

(
Q

1
2 H −1;H−1

) =
∑
k≥1

∥∥∥σ(x)
(
Q

1
2 ek

)∥∥∥2

H−1
=
∑
k≥1

µk ‖ekx‖2H−1

≤ ‖x‖2H−1

∑
k≥1

µk

(
‖ek‖2∞ + C2

H1⊂L
2d
d−2
‖∇ek‖2d

)
.

(7)

3. On H1
ν .

The mapping (0, 1] 3 ν 7→ ‖·‖H−1
ν (Rd) is non-increasing while (0, 1] 3 ν 7→ ‖·‖H1

ν(Rd)
is non-

decreasing. As a by-product, the constant C
H1
ν⊂L

2d
d−2

appearing in (7) (in the case ν = 1) can

be chosen independently of ν ∈ (0, 1]. Formally if we regard H 1 as the case of ν = 0 (which
corresponds to the embedding H 1 ⊂ L

2d
d−2 ), for x ∈ H−1

ν

‖σ(x)‖2
L2

(
Q

1
2 H −1;H−1

ν

) ≤ ‖x‖2
H−1
ν

∑
k≥1

µk

(
‖ek‖2∞ + C2

H 1⊂L
2d
d−2
‖∇ek‖2d

)
. (8)

4. The same argument can be developed on H −1 leading to, for x ∈H −1

‖σ(x)‖2
L2

(
Q

1
2 H −1;H −1

) ≤ ‖x‖2H −1

∑
k≥1

µk

(
‖ek‖2∞ + C2

H 1⊂L
2d
d−2
‖∇ek‖2d

)
. (9)

5. Finally, the estimates (8) and (9) are useful for Itô’s isometry yielding

E

[∥∥∥∥∫ t

0
σ (X(s)) dWQ(s)

∥∥∥∥2

H

]
=
∑
k≥1

µkE
[∫ t

0
‖X(s)ek‖2H ds

]

≤

∑
k≥1

µk

(
‖ek‖2∞ + C2

H 1⊂L
2d
d−2
‖∇ek‖2d

)E
[∫ t

0
‖X(s)‖2H ds

]
,

(10)

where H ∈
{
H −1, H−1, H−1

ν , ν ∈ (0, 1)
}
.

2.2.2 On L2
(
Rd
)

The operator J considered before provides one with an element J
(
Q

1
2u
)

=
∑
k≥1

√
µk 〈u, ek〉H −1 ek ∈

L2
(
Rd
)
.

By noting that, for a given x ∈ L2,

‖ekx‖L2 ≤ ‖x‖L2 ‖ek‖∞ , (11)

it follows, as before, that

‖σ(x)‖2
L2

(
Q

1
2 H −1;L2

) ≤∑
k≥1

µk

(
‖ek‖2∞ + C2

H 1⊂L
2d
d−2
‖∇ek‖2d

)
‖x‖2L2 . (12)
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2.3 Some Stratonovich Considerations

Let us consider, on one of the spaces H (H ∈
{
H −1, H−1, H−1

ν , ν ∈ (0, 1), L2
}
), the equation

dX(t) = f(X(t))dt+ σ(X(t))dWQ(t) = σ(X(t)) ◦ dWQ(t), t ∈ [0, T ] ,

with the Itô and Stratonovich differentials. Heuristically speaking, according to Itô’s formula (e.g.
[23, Theorem 4.2.5]) for ‖·‖2H, one gets

‖X(t)‖2H = ‖X(0)‖2H + 2

∫ t

0

〈
X(s), σ(X(s))dWQ(s)

〉
H

+

∫ t

0

(
2 〈f(X(s)), X(s)〉H + ‖σ(X(s)‖2

L2

(
Q

1
2 H −1;H

)) ds.
In the spirit of Stratonovich differentials (e.g. [18]), one would expect

d ‖X(t)‖2H = 2
〈
X(t), σ(X(t)) ◦ dWQ(t)

〉
H .

As such, a simple glance at the first line of (10) leads one to look into the application H 3 x 7→(√
µkxek

)
k≥1
∈ l2 (H). It belongs to L

(
H; l2(H)

)
and, as a by-product, the application

H×H 3 (x, y) 7→ f̃(x, y) =
∑
k≥1

µk 〈xek, yek〉H ∈ R is a bilinear (bounded) form.

As before,

f̃(x, y) ≤

∑
k≥1

µk

(
‖ek‖2∞ + C2

H 1⊂L
2d
d−2
‖∇ek‖2d

) ‖x‖H ‖y‖H .
One can then consider σ ⊗ σ : H→ H defined, via Riesz identification

〈(σ ⊗ σ) (x), y〉H = f̃(x, y) = 〈σ(x), σ(y)〉
L2

(
Q

1
2 H −1;H

) . (13)

and note that

‖σ ⊗ σ‖L (H;H) = ‖σ‖2
L

(
H;L2

(
Q

1
2 H −1;H

)) . (14)

It now appears obvious that one should set (in the Stratonovich sense)

X(t) ◦ dW (t) := σ (X(t)) ◦ dWQ(t) := X(t)dW (t) +
1

2
(σ ⊗ σ) (X(t)) dt. (15)

This is coherent with the Itô case from Remark 3.3 from [11] or Section 2.3 from [23].

2.4 The L2
(
Rd
)

construction

For the aim of this paper, we make the previous identification in H := L2
(
Rd
)
. Further elements

on the construction on H −1 and the compatibility with the spaces H−1
ν are given in the Appendix

5.3 but they will not be used for our setting. In other words, we define

(σ ⊗ σ) (x) :=
∑
k≥1

µke
2
kx. (16)
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It is simple to check that

σ ⊗ σ ∈ L
(
L2;L2

)
, ‖σ ⊗ σ‖L (L2;L2) ≤

∑
k≥1

µk ‖ek‖2∞ ;

〈(σ ⊗ σ) (x), x〉L2 = ‖σ(x)‖2
L2

(
Q

1
2 H −1;L2

) ;

‖σ ⊗ σ‖2L (H;H) ≤
∑
k≥1

µk ‖ek‖2∞
(
‖ek‖2∞ + 4C2

H 1⊂L
2d
d−2
‖∇ek‖2d

)
,

(17)

where H ∈
{
H −1, H−1, H−1

ν , ν ∈ (0, 1]
}
. The last inequality follows as before. Let us explain the

reasoning in the H−1 case. Provided that φ ∈ C∞0
(
Rd
)
, whenever ‖φ‖H1 ≤ 1,∥∥e2

kφ
∥∥2

H1 =
∥∥e2

kφ
∥∥2

L2 +
∥∥∇ (e2

kφ
)∥∥2

L2 ≤
(
‖φ‖22 ‖ek‖

4
∞ + 4 ‖ek‖2∞ ‖∇ek‖

2
Ld ‖φ‖

2

L
2d
d−2

+ ‖ek‖4∞ ‖∇φ‖
2
2

)
≤ ‖ek‖2∞

(
‖ek‖2∞ + 4 ‖∇ek‖2Ld ‖φ‖

2

L
2d
d−2

)
≤ ‖ek‖2∞

(
‖ek‖2∞ + 4C2

H1⊂L
2d
d−2
‖∇ek‖2d

)
.

Then,

∥∥e2
kx
∥∥2

H−1 ≤ ‖x‖2H−1 sup
‖φ‖H1≤1

∥∥e2
kφ
∥∥
H1 ≤ ‖ek‖2∞

(
‖ek‖2∞ + 4C2

H1⊂L
2d
d−2
‖∇ek‖2d

)
‖x‖2H−1 ,

leading to the inequality. From now on, we set

C0 := C2
H −1⊂H−1

∑
k≥1

µk

(
‖ek‖2∞ ∨ 1

)(
‖ek‖2∞ + 4C2

H 1⊂L
2d
d−2
‖∇ek‖2d

)
. (18)

3 The main result

In this paper we shall prove the existence and the uniqueness of solutions to the equation (2) in
the sense of the definition below.

DEFINITION 2. Fix any T > 0. Let x ∈ L2
(
Rd
)
∩H −1. An H −1 - valued adapted process X

is called strong solution to (2) if the following conditions hold
X(t, ξ, ω) > 0, dt× dξ × dP-a.e. on [0, T ]× Rd × Ω,
X ∈ L2

(
Ω× (0, T )× Rd;R

)
∩ CP([0, T ]; H −1),

ln (X (·)) ∈ L2
(
[0, T ]× Ω; H 1

)
,

and

〈X (t) , ej〉2 = 〈x, ej〉2 −
∫ t

0

∫
Rd
〈∇ ln (X) ,∇ej〉Rd dξds+

〈∫ t

0
X (s) ◦ dWs, ej

〉
2

for all j ∈ N and all t ∈ [0, T ] where {ej} is the above orthonormal basis.

The object of interest in this equation will be the ln function on its natural domain R∗+ := {r ∈
R; r > 0}. For notation purposes, we extend it into a set-valued function Ψ : R→ R by setting

Ψ(r) =

{
{ln r} , ∀r ∈ D(Ψ) := R∗+,
∅, otherwise.
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It is easy to note that the potential function associated with Ψ is given by the (extended-) real-
valued function j : R→ R ∪ {+∞},

j(r) :=


r ln r − r, if r ∈ R∗+,
0, if r = 0,

+∞, otherwise.

One easily notes j to be convex and lower semi-continuous.

REMARK 3. One can easily see that our definition of solution is similar to the usual ones for
porous media equation. It is a strong solution from the stochastic point of view and a variational
solution from the PDE point of view.

We give now the main result of this paper.

THEOREM 4. For each x ∈ L2
(
Rd
)
∩H −1 such that x lnx − x ∈ L1

(
Rd
)
and x > 0 a.e. on

Rd, there is a unique positive solution X to (2) in the sense of the definition above.

4 Proof of the Main Result

Step 1. As announced in the introduction, we shall take three successive approximations of the
solution.
We first consider the equation driven by the regularized version of Ψ. Namely, having fixed λ > 0,
we set

Ψ̃λ(r) := Ψλ(r)−Ψλ(0) + λr, (19)

for all r ∈ R.
If Moreau’s theorem applies such that the sub-differential of the potential j (i.e. Ψ) can be

approximated via the gradients of the inf-convolutions of j denoted by

jλ(r) := inf
r̄∈R

{
j (r̄) +

1

2λ
|r − r̄|2

}
, ∀λ > 0,

we can set Ψλ := ∇jλ and we recall that this corresponds to Yosida’s approximations of Ψ i.e.

Ψλ =
1

λ

(
I− (I + λΨ)−1

)
= Ψ ◦ (I + λΨ)−1 ,

which appears in the approximation (19).
In the second term of (19), Ψλ(0) was introduced in order to get Ψ̃λ(0) = 0 and the final term

is necessary in order to have the strong monotonicity property for our operator.
We consider the first approximating equationdXλ(t) = 4Ψ̃λ (Xλ(t)) dt +

1

2
(σ ⊗ σ) (Xλ(t)) dt+Xλ(t) dW (t), t ≥ 0;

Xλ(0) = x.
(20)

Step 2. Moreover, we consider a further perturbation of the operator 4 i.e. 4− νI, for ν > 0
and I being the identity operator. Whenever convenient, we will drop this I operator and merely
write 4− ν. As a consequence, we introducedXλ,ν(t) = (4− ν) Ψ̃λ (Xλ,ν(t)) dt +

1

2
(σ ⊗ σ) (Xλ,ν(t)) dt+Xλ,ν(t) dW (t), t ≥ 0;

Xλ,ν(0) = x.
(21)
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The arguments on the well-posedness of the equation (21) follow from [23, Chapter 4]. To cope
with the notations in [23, Chapter 4], we conveniently denote by

A := (4− ν) Ψ̃λ +
1

2
(σ ⊗ σ) : V := L2

(
Rd
)
→ V ∗,

B := σ : V → L2

(
Q

1
2 H −1

(
Rd
)

;H−1
ν

(
Rd
))

,

two deterministic operators. For subsequent developments, we will also employ

Aν := (4− ν) Ψ̃λ : V := L2
(
Rd
)
→ V ∗,

the operator without the Stratonovich contribution to the drift. In this sense, the equation can be
considered either as an A-driven one or as an Aν-driven, 1

2σ ⊗ σ-drift perturbed one.
The Gelfand triple is based on the inclusion V := L2

(
Rd
)
⊂ H−1

ν ⊂ V ∗ (see also Remark 1,
assertion 1 in the case ν = 1). In particular, one recalls (see [23, Example 4.1.11] and subsequent
assertions)

〈u, x〉(V,V ∗) = 〈u, x〉H−1
ν

=
〈

(ν −4)−
1
2 u, (ν −4)−

1
2 x
〉

2
, (22)

as soon as x ∈ H−1
ν (for this particularly useful equality, the reader is referred to [23, Remark 4.1.14]

by bearing in mind the operator used in our setting i.e. 4− ν). For our readers’ sake, the main
elements of proof are provided in the Appendix 5.1. According to [23, Theorem 4.2.4], the equation
(21) admits a unique solution denoted by Xλ,ν such that

1. Xλ,ν is F-adapted and with continuous H−1
ν -valued trajectories;

2. Xλ,ν ∈ L2
(
[0, T ]× Ω;L2

(
Rd
))

thus belongs to L2
(
[0, T ]× Ω;H−1

ν

)
, too.

3. E
[
supt∈[0,T ] ‖Xλ,ν(t)‖2

H−1
ν

]
<∞.

Step 3. The approximating solution Xε
λ,ν .

At this point, let us introduce the following SDE{
dXε

λ,ν(t) = −Aεν
(
Xε
λ,ν(t)

)
dt + σ(Xε

λ,ν(t)) ◦ dWQ(t), t ≥ 0;

Xε
λ,ν(0) = x.

(23)

We recall that the Yosida approximation Aεν := 1
ε

(
I− (I + εAν)−1

)
and the resolvent Jε :=

(I + εAν)−1 are Lipschitz-continuous in this context both in H−1
(
Rd
)
and in L2

(
Rd
)
.

We shall now pass to the limit in the following order ε, ν and finally λ.
Step 4. The passage to the limit for ε is based on the following result.

PROPOSITION 5. Let T > 0 be a finite and fixed time horizon. Then, the following assertions
hold true.

1. There exists a generic constant C only depending on T and C0, but not of ε, λ, ν such that
E

[
sup

0≤t≤T

∥∥∥Xε
λ,ν(t)

∥∥∥2

H−1
ν

]
≤ C ‖x‖2

H−1
ν

; E

[
sup

0≤t≤T

∥∥∥Xε
λ,ν(t)

∥∥∥2

L2

]
≤ C ‖x‖2L2 ;

E

[
sup

0≤t≤T
‖Xλ,ν(t)‖2

H−1
ν

]
≤ C ‖x‖2

H−1
ν

; ess sup
0≤t≤T

E
[
‖Xλ,ν(t)‖2L2

]
≤ C ‖x‖2L2 .

(24)
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2. One has the convergence Xε
λ,ν →ε→0

Xλ,ν strongly in L∞
(
[0, T ] ;L2

(
Ω;H−1

(
Rd
)))

and weakly

in L∞
(
[0, T ] ;L2

(
Ω;L2

(
Rd
)))

.

3. If the initial datum x is non-negative, the solution Xε
λ,ν(t) remains non-negative P-a.s. and

for all t ∈ [0, T ].

For our readers’ comfort, we provide a few elements of proof. Please note that, as a consequence,
the solution Xλ,ν remains non-negative if the initial datum x is non-negative.

Elements of proof for Proposition 5. 1. We begin with the behaviour in H−1
(
Rd
)
.

Since, in this framework we deal with a Lipschitz-coefficient-driven equation (23), the solution
is unique in L2

F
(
Ω;C

(
[0, T ] ;H−1 (R)

))
(i.e. an F-adapted process that can be seen as a C-

valued square integrable random variable). To this process, one applies, for ν > 0, the usual
(Hilbert-space) Itô formula to get, for the function 1

2 ‖·‖
2
H−1
ν

,

1

2

∥∥Xε
λ,ν(t)

∥∥2

H−1
ν

=
1

2
‖x‖2

H−1
ν

+

∫ t

0

(〈
−AενXε

λ,ν(s), Xε
λ,ν(s)

〉
H−1
ν

+
1

2

〈
(σ ⊗ σ)

(
Xε
λ,ν(s)

)
, Xε

λ,ν(s)
〉
H−1
ν

)
ds

+
1

2

∫ t

0

∥∥σ (Xε
λ,ν(s)

)∥∥2

L2

(
Q

1
2 H −1;H−1

ν

) ds
+

∫ t

0

〈
Xε
λ,ν(s), σ

(
Xε
λ,ν(s)

)
dWQ(s)

〉
H−1
ν
.

Taking into account the monotonicity of the operator and due to Burkholder-Davis-Gundy
inequality combined with (10), (8) and (17), it follows that, for 0 ≤ t ≤ r ≤ T ,

E
[

sup
0≤t≤r

∥∥Xε
λ,ν(t)

∥∥2

H−1
ν

]
≤ C

(
‖x‖2

H−1
ν

+

∫ r

0
E
[∥∥Xε

λ,ν(s)
∥∥2

H−1
ν

]
ds

)
,

and one concludes using Gronwall’s inequality. The same kind of argument applies directly
to the solution Xλ,ν .

2. Let us now turn to the estimates in L2
(
Rd
)
.

Since, in this case the coefficients are Lispchitz-continuous, the equation is well-posed and
provides a solution in L2

F
(
Ω;C

(
[0, T ] ;L2 (R)

))
. Then, by applying Itô’s formula for ‖·‖2L2 and

using a standard argument (e.g. [10, Page 908, Line 5] guaranteeing that
〈
AενX

ε
λ,ν , X

ε
λ,ν

〉
L2
≥

0), one is able to find a generic constant C > 0, still depending on T and C0 but independent
of ε, ν, λ such that

E

[
sup

0≤t≤T

∥∥Xε
λ,ν(t)

∥∥2

L2

]
≤ C ‖x‖2L2 , ∀x ∈ L2

(
Rd
)
, ∀t ∈ [0, T ] . (25)

.

3. The proof of the convergence is identical to the one in [6, Claim 3 in Lemma 6.4.5].

4. The remaining inequality on L2
(
Rd
)
norms involving Xλ,ν follows by passing to the limit as

ε → 0+. Let us give a few details. Along some subsequence, Xε
λ,ν → Xλ,ν , dt × P × dξ-

a.s. on [0, T ] × Ω × Rd. In particular, it follows that Xλ,ν ∈ L2
(
Ω× [0, T ] ;L2

(
Rd
))
.
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On the other hand, due to the proofs in item 2., one has 1
b−a

∫ b
a E
[∥∥∥Xε

λ,ν(s)
∥∥∥2

L2

]
dr ≤

C ‖x‖2L2 , (for all 0 ≤ a < b ≤ T ). Passing to the limit along the aforementioned sequence,
1
b−a

∫ b
a E
[
‖Xλ,ν(s)‖2L2

]
dr ≤ C ‖x‖2L2 , for all 0 ≤ a < b ≤ T . Then, for every Lebesgue point

of E
[
‖Xλ,ν(·)‖2L2

]
(hence, almost surely on [0, T ]), E

[
‖Xλ,ν(t)‖2L2

]
≤ C ‖x‖2L2 .

5. Finally, to prove non-negativeness, one works in L2
(
Rd
)
and considers the closed subspace

K := L2
(
Rd;R+

)
. It is clear that the projector ΠK(x) = x+ (P-a.s.) is single-valued and the

distance d2
K(x) = ‖x−‖2L2 is regular. Here, x− := −x if x < 0, and 0 if x ≥ 0 and x+ := x if

x ≥ 0, and 0 if x < 0, thus x = x+− x−. Then, one can apply the result in [12, Theorem 3.5]
to get a sufficient condition (cf. [12, Section 4.3]) reading

−
∑
k≥1

µk
∥∥ekx−∥∥2

L2 + 2

〈
−Aενx+

1

2
σ ⊗ σ(x), x−

〉
2

+ C
∥∥x−∥∥2

L2 ≥ 0,

for some C > 0 and every x ∈ L2
(
Rd
)
. One notes that 〈σ ⊗ σ(x), x−〉2 =

∑
k≥1

µk 〈ekx, ekx−〉2 =

−
∑
k≥1

µk ‖ekx−‖2L2 . In view of the inequality (11), one only needs to show that 〈Aενx, x−〉2 ≤

C ‖x−‖2L2 (for some generic constant C > 0). We recall that
〈
(Jεx)− , x−

〉
2
≤ ‖x−‖22 (see [6,

Eq. (2.81)] such that

〈
Aενx, x

−〉
2

=

〈
1

ε
(x− Jεx), x−

〉
2

= −1

ε

∥∥x−∥∥2

L2 −
〈

1

ε
Jεx, x

−
〉

2

≤ −1

ε

∥∥x−∥∥2

L2 +

〈
1

ε
(Jεx)− , x−

〉
2

≤ 0.

Step 5. The passage to the limit as ν → 0+ is based on the following result. In this section
we obtain also some estimates which are necessary for the next step.

PROPOSITION 6. For T > 0 fixed, the following hold true.

1. For every λ > 0, Xλ,ν converges, as ν → 0+ to Xλ strongly in L2
(
Ω;C

(
[0, T ] ;H−1

))
;

2. There exists a generic constant C > 0 independent of λ > 0 and of the initial datum x such
that 

(a) E

[
sup

0≤t≤T
‖Xλ(t)‖2H −1

]
≤ C ‖x‖2H −1 ;

(b) ess sup
0≤t≤T

E
[
‖Xλ(t)‖2L2

]
≤ C ‖x‖2L2 .

(26)

3. Recall that the initial datum x satisfies x lnx− x ∈ L1
(
Rd
)
by assumption. Then, the family

(Ψλ(Xλ))λ∈(0,1] is (equi-)bounded in L2
(
Ω× [0, T ] ; H 1

(
Rd
))

i.e.

sup
λ∈(0,1]

‖Ψλ(Xλ)‖2L2(Ω×[0,T ];H 1(Rd)) ≤ C
(

1 + ‖x‖2L2 +

∫
Rd

(x lnx− x) (ξ) dξ

)
. (27)

12



Proof of Proposition 6. 1. To avoid useless complications, we will simply fix λ > 0 and write
X := Xλ,ν and Y := Xλ,ν′ .

d (X − Y ) (t) =
(

(∆− ν) Ψ̃λ(X(t))−
(
∆− ν ′

)
Ψ̃λ(Y (t))

)
dt

+
1

2
σ ⊗ σ (X(t)− Y (t)) dt+ (σ (X(t)− Y (t))) dWQ(t).

(28)

We write(
(∆− ν) Ψ̃λ(x)−

(
∆− ν ′

)
Ψ̃λ(y)

)
= (∆− 1)

(
Ψ̃λ(x)− Ψ̃λ(y)

)
+ (1− ν)

(
Ψ̃λ(x)− Ψ̃λ(y)

)
−
(
ν − ν ′

)
Ψ̃λ(y).

With this in mind, Itô’s formula for the process in (28) and the functional ‖·‖2H−1 together with
the strict λ-monotonicity of Ψ̃λ yields

‖(X − Y )(t)‖2H−1 + λ

∫ t

0
‖X(s)− Y (s)‖2L2 ds

≤
∫ t

0

{∣∣∣〈Ψ̃λ(X(s))− Ψ̃λ(Y (s)), X(s)− Y (s)
〉
H−1

∣∣∣} ds
+

∫ t

0

{∣∣ν − ν ′∣∣ ∫ t

0

∣∣∣〈Ψ̃λ(Y (s)), X(s)− Y (s)
〉
H−1

∣∣∣} ds
+ C

∫ t

0
‖X(s)− Y (s)‖2H−1 ds+

∣∣∣∣∫ t

0

〈
X(s)− Y (s), (σ(X(s))− σ(Y (s))) dWQ(s)

〉
H−1

∣∣∣∣
(Again, the constant C comes from (10) and (17).)

Let us explain how to deal with the term
∣∣∣〈Ψ̃λ(X(s))− Ψ̃λ(Y (s)), X(s)− Y (s)

〉
H−1

∣∣∣.
Using the Lipschitz continuity of Ψ̃λ, one finds a constant C > 0 (possibly depending on λ > 0

but independent of t ≤ T and of ν, ν ′) such that∣∣∣〈Ψ̃λ(x)− Ψ̃λ(y), x− y
〉
H−1

∣∣∣ ≤ ∥∥∥Ψ̃λ(x)− Ψ̃λ(y)
∥∥∥
L2
‖x− y‖H−1

≤ C ‖x− y‖L2 ‖x− y‖H−1

≤ λ

2
‖x− y‖2L2 + C ‖x− y‖2H−1 .

Using the linear bound Ψ̃λ and Burkholder-Davis-Gundy inequality to deal with the WQ-term, we
get the existence of a constant C > 0 (possibly depending on λ > 0 but independent of t ≤ T and
of ν, ν ′) such that, for 0 ≤ t ≤ r ≤ T ,

E
[

sup
0≤t≤r

‖(X − Y ) (t)‖2H−1

]
+ E

[∫ r

0
‖X(s)− Y (s)‖2L2 ds

]

≤ CE
[∫ t

0
‖X(s)− Y (s)‖2H−1 ds

]
+ C

∣∣ν − ν ′∣∣E [∫ r

0
‖Y (t)‖2L2 ds

]
.

Then, thanks to Gronwall’s inequality and to the estimates in Proposition 5 1., we get

E

[
sup

0≤t≤T

∥∥(Xλ,ν(t)−Xλ,ν′(t)
)∥∥2

H−1

]
+ E

[∫ T

0

∥∥Xλ,ν(s)−Xλ,ν′(s)
∥∥
L2

]
≤ C

∣∣ν − ν ′∣∣ ‖x‖L2 . (29)
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The first assertion follows from the completeness of the underlying space.

2. To see that the limit Xλ belongs to H −1, one proceeds as folows. We recall that, due to
(24),

E

[
sup

0≤t≤T
‖Xλ,ν(t)‖2

H−1
ν

]
≤ C ‖x‖2

H−1
ν
.

On the other hand, since µ 7→ ‖·‖H−1
µ

is non-increasing,

E

[
sup

0≤t≤T
‖Xλ,ν(t)‖2

H−1
µ

]
≤ C ‖x‖2

H−1
ν
, ∀ν ≤ µ.

Having fixed µ > 0, due to the first assertion,

Xλ,ν → Xλ as ν → 0 + in L2
(
Ω;C

(
[0, T ] ;H−1

µ

))
(30)

(remember ‖·‖H−1 and ‖·‖H−1
µ

are equivalent). Then, passing to the limit as ν → 0+, one gets

E

[
sup

0≤t≤T
‖Xλ(t)‖2

H−1
µ

]
≤ C ‖x‖2H −1 .

Finally, let us note that

lim
µ→0+

sup
0≤t≤T

‖Xλ(t)‖H−1
µ

= sup
µ>0+

sup
0≤t≤T

‖Xλ(t)‖H−1
µ

= sup
0≤t≤T

sup
µ>0+

‖Xλ(t)‖H−1
µ

= sup
0≤t≤T

‖Xλ(t)‖H −1 ,

and, by the monotone convergence theorem, one gets the first inequality in (26).
For the second one, one uses almost sure convergence of (some subsequence of)Xλ,ν toXλ combined
with Fatou’s lemma and the upper estimates in Proposition 5.
3. Since we are interested in terms like |∇Ψλ (Xλ)|2, we introduce

Φλ(x) :=

∫
Rd

(
jλ (x (ξ)) +

λ

2
(x(ξ))2

)
dξ, ∀x ∈ L2

(
Rd
)
,

such that the L2 Fréchet-derivative of Φλ(x) provides Ψλ(x) + λx.
We apply Itô’s formula with Φλ (the computation may be justified as in Step 3) to the L2

(
Rd
)
-

valued process Xλ to get

E [Φλ (Xλ(t))]

= E [Φλ (x)] + E
[∫ t

0

〈
∆Ψ̃λ (Xλ(s)) , Ψ̃λ (Xλ(s)) + Ψλ (0)

〉
L2
ds

]

+
1

2

∑
k≥1

µkE
[∫ t

0

∫
Rd
Xλ(s)

(
Ψ̃λ (Xλ(s)) + Ψλ(0)

)
e2
kdξds

]

+
1

2

∑
k≥1

µkE
[∫ t

0

∫
Rd

Ψ̃′λ (Xλ(s))X2
λ(s)ekdξds

]
.
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Let us now focus on the term Ψ̃′λ (Xλ(s)). Using chain rules, one easily computes

Ψ̃′λ (r) = λ+
1

λ+ Jλ(r)
(31)

where Jλ(r) = (I + λΨ)−1 (r).
Using (11), it follows that

E [Φλ (Xλ(t))] + E
[∫ t

0

∥∥∥∇Ψ̃λ (Xλ(s))
∥∥∥2

L2
ds

]

= E [Φλ (x)] +
1

2

∑
k≥1

µk
{
E
[∫ t

0

∫
Rd

(Ψλ (Xλ(s)) + λXλ(s))Xλ(s)e2
kdξds

]

+ E
[∫ t

0

∫
Rd

X2
λ(s)

λ+ Jλ (Xλ(s))
e2
kdξ ds

]
+ E

[∫ t

0
λ
∥∥Xλ(s)e2

k

∥∥2

L2 ds

]}
.

(32)

We can prove that

PROPOSITION 7. The application R+ 3 r 7→ Ψλ(r) + r
λ+Jλ(r) − 2r is non-positive (for λ ≤ 1

2).

The proof of Proposition 7 relies on some technical computation and will be relegated to the
Appendix.

Going back to (32), one has for λ ≤ 1/2

E [Φλ (Xλ(t))] + E
[∫ t

0

∥∥∥∇Ψ̃λ (Xλ(s))
∥∥∥2

L2
ds

]

≤ E [Φλ (x)] +
∑
k≥1

µk ‖ek‖2∞ (λ+ 1)E
[∫ t

0
‖Xλ(s)‖2L2 ds

]
.

(33)

Our assertion follows thanks to (26) (b) by noting that Φλ is lower bounded and jλ(r) ≤ j(r) ≤
r ln r − r, for λ > 0.

Step 6. The passage to the limit as λ→ 0+
As a consequence of the estimates form the previous step, the following weak convergences hold

true. 
Xλ →

λ−→0
X, weakly-* in L∞

(
[0, T ] ;L2

(
Ω; H −1

))
;

Xλ →
λ−→0

X, weakly in L2
(
[0, T ]× Ω;L2

)
;

Ψ̃λ (Xλ) →
λ−→0

η, weakly in L2
(
[0, T ]× Ω; H 1

)
.

(34)

Using the linearity and boundedness in H −1 of σ ⊗ σ, one has a (weak) sense of the limiting
equation

〈X (t) , ej〉2 = 〈x, ej〉2 −
∫ t

0

∫
Rd
〈∇η (X) ,∇ej〉Rd dξds+

〈∫ t

0
X (s) ◦ dWs, ej

〉
2

. (35)

Step 7. To conclude, one still has to prove that η = Ψ(X) in a P×L eb almost sure sense on
Ω× [0, T ]× Rd.

This follows from the following result.

15



PROPOSITION 8. The following assertion holds true.

lim sup
λ→0+

E
[∫ T

0

∫
Rd

Ψ̃λ (Xλ(t)(ξ))Xλ(t)(ξ)dξdt

]
≤ E

[∫ T

0

∫
Rd
η(t)(ξ)X(t)(ξ)dξdt

]
. (36)

Proof. First, let us note that if K is a bounded subset of Rd, and x ∈ L2
(
Rd
)
, non-negative-valued,

then x1K ∈H −1. Indeed, one begins with writing x(ξ)1K(ξ) = x(ξ)1x(ξ)≤1,ξ∈K +x(ξ)1x(ξ)>1,ξ∈K .
Then, with p = 2d

d+2 ,∫
Rd

(x(ξ)1K(ξ))p dξ ≤
∫
Rd

(
1ξ∈K + x2(ξ)1x(ξ)>1

)
dξ ≤ L eb(K) + ‖x‖22 <∞.

As such, x1K ∈ L
2d
d+2 ⊂ H −1. As a consequence, if Y ∈ L2

(
Ω× [0, T ] ;L2

(
Rd
))
, then Y 1K ∈

L2
(
Ω× [0, T ] ; H −1

)
.

Next, for k ≥ 1, let K be a Lebesgue measure-continuous bounded 1 set (i.e. L eb (∂K) = 0)
containing the support of ek.

Then, if x ∈ L2
(
Rd
)
∩H −1, then x1K is H −1-valued and

〈x1K , ek〉H −1 = −
〈
x1K , (−∆)−1 ek

〉
2

= −
〈
x, (−∆)−1 ek

〉
2

= 〈x, ek〉H −1 (37)

We claim that Xλ1K converges strongly in L2
(
Ω× [0, T ] ; H −1

)
to X1K .

Let us further note that

1. If x ∈ L2
(
Rd
)
∩H−1 and y ∈ L2(Rd), then

〈x1K , y〉H−1
µ

=
〈

(µI−∆)−1 (1Kx) , y
〉

2
=

∫
K

(µI−∆)−1 x(ξ)y(ξ)dξ.

2. If xn converges to x strongly in L2
(
Rd
)
, then, by the same argument seen before, (xn−x)1K

converges to 0 in L
2d
d+2 (hence in the larger spaces H −1 ⊂ H−1.)

3. The same applies to the convergence of Xn to X strongly in L2
(
Ω× [0, T ]× Rd;R

)
leading

to (Xn −X)1K converging to 0 strongly in L2
(

Ω× [0, T ] ;L
2d
d+2

)
;

One applies Itô’s formula in H−1
ν to

(
Xε
λ,ν −Xε

λ′,ν

)
1K .

In this framework, the term −Aεν
(
Xε
λ,ν

)
+ Aεν

(
Xε
λ′,ν

)
is consistent in L2

(
Rd
)
such that(

Aεν

(
Xε
λ,ν

)
+Aεν

(
Xε
λ′,ν

))
1K belongs to L

2d
d+2 ⊂H −1 ⊂ H−1. One gets

E
[∥∥(Xε

λ,ν(t)−Xε
λ′,ν(t)

)
1K
∥∥2

H−1
ν

]
+ E

[∫ t

0

∫
K

[
Ψ̃λ

(
Jε
(
Xε
λ,ν(s)

))
− Ψ̃λ′

(
Jε
(
Xε
λ′,ν(s)

))] (
Xε
λ,ν(s)−Xε

λ′,ν

)
dξ ds

]

≤ CE
[∫ t

0

∥∥(Xε
λ,ν(s)−Xε

λ′,ν(s)
)
1K
∥∥2

H−1
ν
ds

]
1Note that by the density argument, we may assume ek ∈ S0(Rd) ∩ D(Rd) with the notations from [3].
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As a consequence, by integrating this on a time interval [a, b] ⊂ [0, T ] and passing to the limit as
ε → 0+ then as ν → 0+ (each of the envolved processes belonging to L2), one gets the inequality
below at every Lebesgue point (hence P-a.s. )

E
1

2
‖Xλ(t)1K −Xλ′(t)1K‖2H −1 + E

∫ t

0

∫
K

(Ψλ (Xλ(s))−Ψλ′ (Xλ′(s))) (Xλ(s)−Xλ′(s)) dξds

+E
∫ t

0

∫
K

(
λXλ(s)− λ′Xλ′(s)

)
(Xλ(s)−Xλ′(s)) dξds

≤ CE
∫ t

0
‖Xλ(s)1K −Xλ′(s)1K‖2H −1 ds.

Since we can write

(Ψλ (Xλ)−Ψλ′ (Xλ′)) (Xλ −Xλ′)

= (Ψ (Jλ (Xλ))−Ψ (Jλ′ (Xλ′)))
(
Jλ (Xλ)− Jλ′ (Xλ′) + λΨλ (Xλ)− λ′Ψλ′ (Xλ′)

)
≥ −(λ+ λ′)

2

(
|Ψλ (Xλ)|2 + |Ψλ′ (Xλ′)|2

)
,

we get by Gronwall’s lemma that

E ‖Xλ(t)1K −Xλ′(t)1K‖2H −1

≤
(
λ+ λ′

)
E
∫ t

0

∫
K

(
|Ψλ (Xλ(s))|2 + |Ψλ′ (Xλ′(s))|2

)
dξds

+
(
λ+ λ′

)
E
∫ t

0

∫
K

(
|Xλ(s)|2 + |Xλ′(s)|2

)
dξds.

Keeping in mind that

E
∫ t

0

∫
K

(
|Ψλ (Xλ(s))|2 + |Ψλ′ (Xλ′(s))|2

)
dξds < C

follows from the Poincaré inequality and (27), we get thus that by (26)

E ‖Xλ(s)1K −Xλ′(s)1K‖2H −1 −→
λ,λ′→0

0.

In particular, combined with (37), this implies that
〈Xλ, ek〉H −1 converges strongly in L2 (Ω× [0, T ] ;R) to 〈X, ek〉H −1 ;

Xλek converges strongly in L2
(
Ω× [0, T ] ; H −1

)
to Xek.

Xλe
2
k converges strongly in L2

(
Ω× [0, T ] ; H −1

)
to Xe2

k.

(38)

In order to prove (36) we shall first apply the Itô formula with u 7−→ 1
2 ‖u‖

2
H −1 to the process

Xλ and we get

1

2
E ‖Xλ(t)‖2H −1 + E

∫ t

0

∫
Rd

Ψλ (Xλ(s))Xλ(s)dξds+ λE
∫ t

0

∫
Rd
|Xλ(s)|2 dξds

≤ 1

2
E ‖x‖2H −1 + CE

∫ t

0

∞∑
k=1

µk
〈
Xλ (s) , e2

kXλ (s)
〉
H −1 ds

+CE
∫ t

0

∞∑
k=1

µk |Xλ (s) ek|2H −1 ds.
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By using the Fatou’s lemma in the first term and (38) in the last part we get

1

2
E ‖X(t)‖2H −1 + lim inf

λ→0
E
∫ t

0

∫
Rd

Ψλ (Xλ(s))Xλ(s)dξds

≤ 1

2
E ‖x‖2H −1 + CE

∫ t

0

∞∑
k=1

µk
〈
X (s) , e2

kX (s)
〉
H −1 ds

+CE
∫ t

0

∞∑
k=1

µk |X (s) ek|2H −1 ds.

On the other hand, by appling the Itô formula to the solution verifying (35) with the same norm
and combining with the previous relation we get (36).

We continue the proof of our main result. For simplicity, let us denote by Ψ̄λ(x) := Ψλ(x) +λx.
We consider φN a non-decreasing sequence of infinitely differentiable, [0, 1]-valued functions such
that 1BN ≤ φN ≤ 1BN+1

for every N ≥ 1.
The convexity of r 7→ j̃λ(r) := jλ(r) + λ

2 r
2 yields

(Ψλ(x) + λx) (x− u) ≥ j̃λ(x)− j̃λ(u)

for every (x, u).
By applying this inequality to the couple (Xλ, U) (for a process U ∈ L2

(
Ω× [0, T ] ;L2,loc

(
Rd
))
)

and by multiplying with the non-negative φN (for N fixed, for the time being), and by integrating,
it follows that

E
[∫ T

0

∫
Rd

Ψ̄λ (Xλ(t, ξ)) (Xλ(t, ξ)− U(t, ξ))φN (ξ)dξdt

]

≥ E
[∫ T

0

∫
Rd

(
j̃λ (Xλ(t, ξ))− j̃λ(U(t, ξ)

)
φN (ξ)dξdt

]
.

(39)

The local integrability of U guarantees the consistency of the left-hand term. The function jλ(r) is
non-positive as r ≤ 1 and bounded from below by −1 if 0 ≤ r ≤ 1. It is upper-bounded by r ln r,
being sub-quadratic when r ≥ 1. The bounded support of φN then guarantees consistency of the
right-hand term.
Again by 0 ≤ φN ≤ 1 and Ψ̃λ(x)x ≥ 0, it follows, from (39) that

lim inf
λ→0+

E
[∫ T

0

∫
Rd

Ψ̃λ (Xλ(t, ξ))Xλ(t, ξ)dξdt

]

≥ lim inf
λ→0+

E
[∫ T

0

∫
Rd

Ψ̄λ (Xλ(t, ξ))Xλ(t, ξ)φN (ξ)dξdt

]

≥ lim inf
λ→0+

{
E
[∫ T

0

∫
Rd

Ψ̄λ (Xλ(t, ξ))U(t, ξ)φN (ξ)dξdt

]

+ E
[∫ T

0

∫
Rd
j̃λ (Xλ(t, ξ))φN (ξ)dξdt

]
− E

[∫ T

0

∫
Rd
j̃λ(U(t, ξ))φN (ξ)dξdt

]}
.

(40)

We designate by Ikλ indexed by k ∈ {1, 2, 3} the three integral terms appearing on the right side.
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1. For the first term I1
λ one proceeds as follows.

We recall the boundedness in L2
(
Ω× [0, T ] ;L2

(
Rd
))

of ∇Ψ̃λ (Xλ) = ∇Ψ̄λ (Xλ) and the
compact support of φN to deduce, by invoking Poincaré’s inequality on the bounded open set
BN+1, that

lim
λ→0+

I1
λ = E

[∫ T

0

∫
Rd
η(t, ξ)U(t, ξ)φN (ξ)dξdt

]
.

2. For I3
λ, one uses the point-wise convergence of j̃λ to j as λ → 0+, combined with the afore-

mentioned bounds on jλ and the bounded support of φN to deduce, via Lebesgue’s dominated
convergence on Ω× [0, T ]×BN+1,

lim
λ→0+

I3
λ = E

[∫ T

0

∫
Rd
j(U(t, ξ))φN (ξ)dξdt

]
.

3. For the remaining term, we note that there exists λ0 < 1 such that jλ(x) ≥ jλ0(x) for every
λ ≤ λ0 (and all x ∈ R+). The quadratic contribution λX2

λ has a null limit in P×dt×dξ-mean
owing to the λ- uniform bounds on square moments.
Second, the functional x ∈ L2 7→ E

[∫ T
0

∫
Rd jλ0(x(t, ξ))φN (ξ)dξdt

]
is convex and strongly

(hence weakly) lower semicontinuous. This is a consequence of jλ0 being continuous as a real
function and Fatou’s Lemma. As a consequence,

lim inf
λ→0+

E
[∫ T

0

∫
Rd
jλ(Xλ(t, ξ))φN (ξ)dξdt

]
≥ lim inf

λ→0+
E
[∫ T

0

∫
Rd
jλ0(Xλ(t, ξ))φN (ξ)dξdt

]
≥ E

[∫ T

0

∫
Rd
jλ0(X(t, ξ))φN (ξ)dξdt

]
.

To conclude, one takes the supremum over λ0 > 0 and uses dominated (or monotone) con-
vergence to conclude that

lim inf
λ→0+

I2
λ ≥ E

[∫ T

0

∫
Rd
j(X(t, ξ))φN (ξ)dξdt

]
.

Plugging these three items into (40) and recalling that (39) holds true, we finally get

E
[∫ T

0

∫
Rd
η(t, ξ)X(t, ξ)dξdt

]
− E

[∫ T

0

∫
Rd
η(t, ξ)U(t, ξ)φN (ξ)dξdt

]
≥ E

[∫ T

0

∫
Rd

(j(X(t, ξ))− j (U(t, ξ)))φN (ξ)dξdt

]
≥ E

[∫ T

0

∫
Rd

Ψ(U(t, ξ)) (X(t, ξ)− U(t, ξ))φN (ξ)dξdt

]
,

(41)

where we have, once again, used the convexity of j and the sub-gradient property Ψ(u) ∈ ∂j(u).
The right-hand term makes sense if Ψ(U) belongs to L2

(
Ω× [0, T ] ;L2,loc

(
Rd
))
.

For everyN , (X + η)φN provides a regular process which is in L2 (Ω× (0, T )×BN+1;R). Using
the monotonicity of Ψ on R, we get an L2-monotone realization of this operator. Hence, we get the
existence of ZN as a unique L2 (Ω× (0, T )×BN+1;R)-solution to

Z + Ψ(Z) = (X + η)φN .
2

2The reader is invited to note that ZN = J1 ((X + η)φN ) where J1(r) =: x solves x+ lnx = r for all x > 0.
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Note that for all N ≤ M , ZN and ZM coincide on Ω × (0, T ) × BN (P × dt × Leb-a.s.) and
ZN ≤ ZM . Secondly, the reader is invited to note that the right-hand term in the equation i.e.
(X + η)φN is finite almost surely (on Ω × (0, T ) × BN ), and, as a consequence, the solution ZN
belongs to the domain of Ψ, or, equivalently, ZN > 0, on Ω× (0, T )×BN (P× dt× Leb-a.s.).

For every N ≥ 1, we define
UN := ZN1BN +X1Rd\BN

and U := supN ZN . One easily sees that U = ZN > 0, P × dt × Leb-a.s. when restricted on
Ω × (0, T ) × BN . It is now clear that Ψ (U) satisfies the local integrability properties (on the
relevant set BN , Ψ(ZN ) = (X + η)φN − ZN ) and we are able to apply (41) with U .

The reader is invited to note that, on BN+1, U + Ψ(U) = X + η in an a.s. way.
Using this, the fact that φN is null outside BN+1 and by rearranging (41), we get for every

M ≥ 1, M ≤ N + 1,

E
[∫ T

0

∫
Rd

(X − U)2 (t)(ξ)φN (ξ)dξdt

]
≤ E

[∫ T

0

∫
Rd

(ηX) (t)(ξ) (1− φN (ξ)) dξdt

]
.

The left-hand term is non-decreasing in N . It follows that, for every M ≥ 1,

E
[∫ T

0

∫
Rd

(X − U)2 (t)(ξ)φM (ξ)dξdt

]
≤ lim

N→∞
E
[∫ T

0

∫
Rd

(ηX) (t)(ξ) (1− φN (ξ)) dξdt

]
= 0,

the equality being a consequence of the integrability of ηX. It follows that X = U and, thus,
η = Ψ(X), first P × dt × dξ-a.s. on Ω × (0, T ) × BM , then on the whole space. By our previous
argument, it follows that X = (U =)ZN > 0, P× dt× Leb-a.s. on Ω× (0, T )× BN in a first step,
then by allowing N →∞, one gets X > 0 a.s. on Ω× (0, T )× Rd.

Step 8. Uniqueness of the solution is a standard consequence of the monotonicity of the
logarithm and we omit it.

5 Appendix

5.1 Proof of Well-Posedness of Equation 21

Proof of Well-Posedness of Equation 21. We check the main assumptions in [23, Page 56]

1. Hemicontinuity cf. [23, Page 56, (H1)]
The fact that θ 7→ 〈A(u+ θv), x〉(V ∗,V ) is continuous for every u, v, x ∈ V follows as in[23,
Page 71, (H1)]. Indeed, owing to (22) combined with (46),

〈A(u+ θv), x〉(V ∗,V ) =
〈

(4− νI) Ψ̃λ(u+ θv), x
〉

(V ∗,V )
+

1

2
〈(σ ⊗ σ) (u+ θv) , x〉(V ∗,V )

=−
〈

Ψ̃λ(u+ θv), x
〉

2
+

1

2

(
〈(σ ⊗ σ) (u) , x〉(V ∗,V ) + θ 〈(σ ⊗ σ) (v) , x〉(V ∗,V )

)
.

The continuity of the second term is obvious. For the first term, one uses the linear growth
of Ψ̃λ i.e. Ψ̃λ(r) ≤ cλ |r| (with cλ = λ + 1

λ), its continuity and concludes due to Lebesgue’s
dominated convergence.
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2. Weak monotonicity cf. [23, Page 56, (H2)]
For u, v ∈ V , one recalls (22), followed by (13) and (8) (written for σ(u) − σ(v) replacing
σ(x)) to get

〈A(u)−A(v), u− v〉(V ∗,V ) +
1

2
‖σ(u)− σ(v)‖2

L2

(
Q

1
2 H −1;H−1

ν

)
=
〈

(4− νI)
(

Ψ̃λ(u)− Ψ̃λ(v)
)
, u− v

〉
(V ∗,V )

+
1

2
〈(σ ⊗ σ) (u− v), u− v〉(V ∗,V ) +

1

2
‖σ(u)− σ(v)‖2

L2

(
Q

1
2 H −1;H−1

ν

)
≤
〈

(4− νI)
(

Ψ̃λ(u)− Ψ̃λ(v)
)
, u− v

〉
(V ∗,V )

+
1

2
‖σ ⊗ σ‖L (H−1

ν ;H−1
ν ) ‖u− v‖

2
H−1
ν

+
1

2
‖σ(u)− σ(v)‖2

L2

(
Q

1
2 H −1;H−1

ν

)
≤−

〈
Ψ̃λ(u)− Ψ̃λ(v), u− v

〉
2

+ C ‖u− v‖2
H−1
ν
≤ C ‖u− v‖2

H−1
ν
,

where the last inequality follows from the monotonicity of r 7→ Ψλ(r), while C is determined
by C0 (cf. (17), (8) and (18)).

3. Coercivity cf. [23, Page 56, (H3)]
Similar to the previous computations, one gets, for every u ∈ V = L2

(
Rd
)
,

〈A(u), u〉(V ∗,V ) +
1

2
‖σ(u)‖2

L2

(
Q

1
2 H −1;H−1

ν

)
=−

〈
Ψ̃λ(u), u

〉
2

+ C ‖u‖2
H−1
ν
≤ −λ ‖u‖22 + C ‖u‖2

H−1
ν
.

For the last inequality, one recalls that Ψ̃λ(r) = Ψλ(r)−Ψλ(0)+λr and uses the monotonicity
of Ψλ.

4. Boundedness cf. [23, Page 56, (H4)]
For every u ∈ V , one has

‖Au‖V ∗ =

∥∥∥∥(4− νI) Ψ̃λ(u) +
1

2
(σ ⊗ σ) (u)

∥∥∥∥
V ∗
≤
∥∥∥Ψ̃λu

∥∥∥
2

+
1

2
‖(σ ⊗ σ) (u)‖V ∗ .

On the other hand, a simple trick (and (14)) gives

‖(σ ⊗ σ)u‖V ∗ = sup
v∈V ; ‖v‖V ≤1

〈v, (σ ⊗ σ) (u)〉(V,V ∗) = sup
v∈V ; ‖v‖V ≤1

〈(σ ⊗ σ) (u), v〉H−1
ν

≤‖σ ⊗ σ‖L (H−1
ν ;H−1

ν ) sup
v∈V ; ‖v‖V ≤1

‖u‖H−1
ν
‖v‖H−1

ν

≤‖σ ⊗ σ‖L (H−1
ν ;H−1

ν ) × C
2
L2⊂H−1

ν
sup

v∈V ; ‖v‖V ≤1
‖u‖V ‖v‖V .

As a consequence, and owing again to (17), ‖Au‖V ∗ ≤ (C + cλ) ‖u‖2, where cλ is, again, the
Lipschitz constant for r 7→ Ψλ(r)−Ψλ(0) + λr.

As a consequence, the assumptions of [23, Theorem 4.2.4] are satisfied.
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5.2 Proof of Proposition 7

Proof of Proposition 7. To this purpose, we recall that r = Jλ(r)+λ ln Jλ(r) ≤ Jλ(r)+λ (Jλ(r)− 1)
leading to Jλ(r) ≥ r+λ

1+λ , ∀r > 0.

• The first case is when r ≥ 3. In this case, Ψλ(r) = r−Jλ(r)
λ ≤ r

λ+1 and r
λ+Jλ(r) <

r
λ+1 and the

conclusion follows.

• Let us now turn to the case when r < 3. We note that, Jλ(r) ≤ r if r ≥ 1 and Jλ(r) < 1 if
r < 1 leading to Jλ(r) ≤ er, ∀r > 0. We now consider (for r > 0) the function[

r + λ

1 + λ
, er
]
3 x 7→ f(x) := lnx+

r

λ+ x
.

The derivative f ′(x) = 1
x −

r
(λ+x)2

≥ 0. Indeed, this is equivalent to proving that x2 +

(2λ− r)x+ λ2 ≥ 0 on the interval specified. The discriminant is r2 − 4λr. The conclusion is
obvious if r ≤ 4λ. Let us assume that 3 > r > 4λ. We claim that r+λ

1+λ ≥
r−2λ+

√
r2−4λr

2 . This
is equivalent to proving that r(1 − λ) + 2λ(2 + λ) ≥ (1 + λ)

√
r2 − 4λr or, again, by taking

squares and re-arranging the terms, with

−4λr2 + 4λ (3 + λ) r + 4λ2 (2 + λ)2 ≥ 0,

obvious for r ≤ 3.
It follows that f(Jλ(r)) ≤ f (er) = r + r

λ+er < 2r and our proof is complete.

5.3 Stratonovich on H −1

The elements ek ∈ H −1 give an orthonormal basis ej ⊗ ek ∈ H −1 ⊗H −1. One then defines the
(σ ⊗ σ) a trace class operator on H −1 ⊗H −1 given by

(σ ⊗ σ) (ej ⊗ ek) = µkδj,k (ej ⊗ ek) .

Via Riesz’ representation theorem (for bilinear forms), σ⊗σ ∈ L
(
H −1; H −1

)
. Since H −1 ⊂ H−1,

it follows that

‖σ ⊗ σ‖L (H −1;H−1) ≤ CH −1⊂H−1 ‖σ ⊗ σ‖L (H −1;H −1) . (42)

Please note that the natural continuous embeddings H −1 ⊂ H−1
ν ⊂ H−1

ν′ ⊂ H−1, for 0 < ν ≤
ν ′ ≤ 1 yield

‖σ ⊗ σ‖L (H −1;H−1
ν ) ≤ CH −1⊂H−1 ‖σ ⊗ σ‖L (H −1;H −1) . (43)

Again, due to the dense embedding H −1 ⊂ H−1, σ⊗ σ extends into a bounded linear operator on
H−1 whose norm preserves that of σ ⊗ σ ∈ L

(
H −1;H−1

)
and, owing to (42) and (43),

‖σ ⊗ σ‖L (H−1;H−1
ν ) ≤ CH −1⊂H−1 ‖σ ⊗ σ‖L (H −1;H −1) . (44)

Finally, since ‖·‖H−1
ν
≥ ‖·‖H−1 , for all 0 < ν ≤ 1, it follows that

‖σ ⊗ σ‖L (H−1
ν ;H−1

ν ) ≤ CH −1⊂H−1 ‖σ ⊗ σ‖L (H −1;H −1) . (45)

Finally, recalling that ‖·‖L2 ≥ ‖·‖H−1 and by considering the Gelfand triple based on the inclusion
V := L2

(
Rd
)
⊂ H−1

(
Rd
)
⊂ V ∗, σ ⊗ σ ∈ L

(
L2;V ∗

)
and

‖σ ⊗ σ‖L (L2;V ∗) ≤ CH −1⊂H−1 ‖σ ⊗ σ‖L (H −1;H −1) . (46)
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