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Abstract
The goal of this paper is to derive a traffic flow macroscopic model from a second order

microscopic model with a local perturbation. At the microscopic scale, we consider a Bando
model of the type following the leader, i.e the acceleration of each vehicle depends on the
distance of the vehicle in front of it. We consider also a local perturbation like an accident
at the roadside that slows down the vehicles. After rescaling, we prove that the ”cumulative
distribution functions” of the vehicles converges towards the solution of a macroscopic ho-
mogenized Hamilton-Jacobi equation with a flux limiting condition at junction which can be
seen as a LWR (Lighthill-Whitham-Richards) model.
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1 Introduction
The modelling and simulation of traffic flow is a challenging task in particular in order to design
infrastructure. Indeed, there are some examples in which the construction of a new infrastructure
did not improve the traffic. For example, in Stuttgart, Germany, after investments into the road
network in 1969, the traffic situation did not improve until a section of newly build road was closed
for traffic again (see [22]). This is known as the Braess’ paradox. In the past years, a lot of work
has been done concerning the modelling and simulation of traffic flows problems.

Traffic flow can be modelled at different scales depending on the level of details one wants to
observe: the microscopic scale (describes the dynamics of each of the vehicles), the macroscopic
scale (describes the dynamics of the density of vehicles) and the mesoscopic scale (describes the
dynamics of the density of vehicles but the car-to-car interactions are not lost).

Microscopic models are considered more justifiable because the behaviour of every single vehicle
can be described with high precision whereas macroscopic models are based on assumptions which
are less verifiable. Another way to justify macroscopic models is to derive them from microscopic
models by rescaling arguments.

The problem of deriving macroscopic models from microscopic ones has already been studied
for models of the type following the leader (i.e. the velocity or the acceleration of each vehicle
depends only on the distance to the vehicle in front of it). We refer for example to [3, 8, 16, 17, 23]
where the authors rescaled the empirical measure and obtained a scalar conservation law (LWR
model). In particular, passing from microscopic to macroscopic model for second-order models
was instead investigated in [3, 15], where the Aw-Rascle model is derived as the limit of a second
order follow-the-leader model.
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l’Université, 76801 St Etienne du Rouvray cedex. France
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In this paper we establish a connection between a car-following model and a fluid-dynamic
model. This result is a generalization of the results of [13] to a second order microscopic model.
We consider a second order microscopic model of follow-the-leader type with a local perturbation.
In such model, the whole traffic flow is determined by the dynamics of the very first vehicle (the
leader). We will establish a connection between this second order discrete model and a macroscopic
model equivalent to a LWR model. The idea is to rescale the microscopic model, which describes
the dynamics of each vehicle individually, in order to get a macroscopic model which describes the
dynamics of density of vehicles.

The model we study here is similar to the one considered in [12], but in our work, as in [13],
we assume that there is a local perturbation (located at the origin for example) that slows down
the vehicles and we want to understand how this local perturbation influences the macroscopic
dynamics. Due to this perturbation, it is natural to get an Hamilton-Jacobi equation with a
junction condition at the origin and an effective flux limiter. Further, our result is stronger than
the one in [13] because our microscopic model is a second order model which is more realistic than
the first order model considered in the last paper. From a mathematical point of view the fact of
considering a second order model presents many technical difficulties. First, we need to consider
a system of two non-local PDEs instead of a single equation [11, 12]. Moreover, the two functions
that we consider have to satisfy certain properties that derive from the physical characteristics of
the microscopic model and those properties need to be proven for the system of non-local PDEs
which is more complicated in the case of a second order model than in the case of a first order
model.

Paper organization. The paper is organized as follows. In Section 2, we present the microscopic
model for which we will present an homogenization result. In Section 3, we inject the system of
ODEs into a system of PDEs and we present our main results. Section 3.3 is dedicated to the
definition of the non-local operators which appear in the PDEs given in Section 3. In Section
4, we introduce the notion of viscosity solutions for the considered problems and give stability,
existence and uniqueness results. In Sections 5 and 6 we present the correctors necessaries for the
proof of convergence which is located in Section 7. Section 8 contains the proof of existence of
correctors for the junction, where we use the idea developed in [1, 14] and in the lectures of Lions
at the "College de France" [25], which consists in constructing correctors on truncated domains.
In Section 9 we show the link between the system of ODEs and the system of PDEs which proof
is in Appendix B. Finally in Appendix A we analyse the properties of the microscopic model.

2 A first main result
In this paper, we are interested in a second order microscopic model that can simulate the presence
of a local perturbation. In order to do that, we considered a modified version of the model
introduced by Bando et al in [4]. More precisely, we consider a "follow-the-leader" model of the
following form

Üj(t) = a
(
V (Uj+1(t)− Uj(t)) · φ (Uj(t))− U̇j(t)

)
, (2.1)

where Uj denotes the position of the j-th vehicle, U̇j its velocity and Üj its acceleration. The
function φ simulates the presence of a local perturbation located at the origin and we denote by
r its radius of influence. In this model, a and V represent respectively the drivers sensibility and
the optimal velocity function. We make the following assumptions on V , φ and on the coefficient
a.

Assumption (A)

• (A1) V : R→ R+ is Lipschitz continuous, non-negative.

• (A2) V is non-decreasing on R.

• (A3) There exists h0 ∈ (0,+∞) such that for all h ≤ h0, V (h) = 0.
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• (A4) There exists hmax ∈ (h0,+∞) such that for all h ≥ hmax, V (h) = V (hmax) =: Vmax.

• (A5) The function p 7→ pV (−1/p) is strictly convex on [−1/h0, 0).

• (A6) The function φ : R→ (0, 1] is Lipschitz continuous and φ(x) = 1 for |x| ≥ r. We denote
by φ0 = min

x∈[−r,r]
φ(x) > 0.

• (A7)(Monotonicity). a ≥ 4 ||V ′||∞ ||φ||∞ + 4 ||φ′||∞ ||V ||∞ .

Remark 2.1 (Remark on (A6)). In the case φ = 0 on an open interval (therefore φ0 = 0) all
the vehicles left of the perturbation would come to a full stop. This case lacks any interest and
therefore we can assume that φ0 > 0.

Remark 2.2 (Remark on (A7)). Assumption (A7) yields that for all (b, x) ∈ R2, the function

f : z 7→ a

2z − 2V (b+ z)φ (x− z)

is non-decreasing. This result is particularly important later in the paper because it implies that
the systems we consider later in this work are monotone in the sense of Ishii and Koike [21], which
will imply the uniqueness of the solution we consider.

As we said in the introduction, in order to obtain an homogenization result for (3.1), we will
inject the system of ODEs into a system of PDEs. To do so, we proceed as in [10, 13] by introducing
the rescaled "cumulative distribution function", which is the primitive of the rescaled empirical
measure, defined by,

ρε(t, y) = −ε

∑
i≥0

H (y − εUi (t/ε)) +
∑
i<0

(−1 +H (y − εUi (t/ε)))

 (2.2)

with

H(x) =
{

1 if x ≥ 0
0 if x < 0. (2.3)

The macroscopic model

We define H : R→ R, by

H(p) =


−p− k0 for p < −k0,

−V
(
−1
p

)
· |p| for − k0 ≤ p < 0,

p for p ≥ 0.

(2.4)

Note that such H is continuous, coercive and because of (A5), there exists a unique point p0 ∈
[−k0, 0] such that {

H is decreasing on (−∞, p0)
H is increasing on (p0,+∞),

(2.5)

and we denote by

H0 := H(p0) = min
p∈R

H(p) < 0. (2.6)
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We want to show that the rescaled "cumulative distribution function" converges to the solution
of the following macroscopic model.

u0
t +H(u0

x) = 0 for (t, x) ∈ (0,+∞)× (−∞, 0)
u0
t +H(u0

x) = 0 for (t, x) ∈ (0,+∞)× (0,+∞)
u0
t + FA(u0

x(t, 0−), u0
x(t, 0+)) = 0 for (t, x) ∈ (0,+∞)× {0}

u0(0, x) = u0(x) for x ∈ R.

(2.7)

where A has to be determined and FA is defined by

FA(p−, p+) = max
(
A,H

+(p−), H−(p+)
)
, (2.8)

with

H
−(p) =

{
H(p) if p ≤ p0
H(p0) if p ≥ p0

and H
+(p) =

{
H(p0) if p ≤ p0
H(p) if p ≥ p0.

(2.9)

The initial condition u0 is a function that satisfies

−k0 ≤ (u0)x ≤ 0 and for all ε > 0 ρε(0, x) =
⌊
u0(x)
ε

⌋
. (2.10)

According to [19], for all A ∈ R, there exists a unique solution u0 of (2.7).

Remark 2.3. We notice that in the case of traffic flow, (2.7) is equivalent (deriving in space) to
a LWR model (see [24, 26]) with a flux limiting condition at the origin. In fact, the fundamental
diagram of the model is pV (1/p) and u0

x corresponds to the density of vehicles.

Passage from a microscopic to a macroscopic model

The main result of this paper is the following convergence result.

Theorem 2.4 (Passage from a microscopic to a macroscopic model). Assume (A). There exists a
unique A ∈ [H0, 0] such that the function ρε defined by (2.2) converges locally uniformly towards
the unique solution of (2.7).

3 Main results
3.1 Injecting the system of ODEs into a system of PDEs
In the rest of the paper, we will work with an equivalent formulation of (2.1). We borrow the idea
from [9, 11, 12] and consider for all j ∈ Z,

Ξj(t) = Uj(t) + 1
α
U̇j(t) with α = a

2 .

Using this new function, we obtain the following system of ODEs equivalent to (2.1) for all j ∈ Z,
for all t ∈ (0,+∞), U̇j(t) = α (Ξj(t)− Uj(t))

Ξ̇j(t) = α (Uj(t)− Ξj(t)) + 2V (Uj+1(t)− Uj(t)) · φ (Uj(t)) .
(3.1)

In Appendix A, we give some properties of system 3.1, such as maximal velocities of the vehicles
and minimal and maximal distance between two consecutive vehicles.
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We now introduce the "cumulative distribution function" for (Ξj)j , defined by

σε(t, y) = −ε

∑
i≥0

H (y − εΞi (t/ε)) +
∑
i<0

(−1 +H (y − εΞi (t/ε)))

 . (3.2)

Under assumption (A), (ρε, σε) is a discontinuous viscosity solution (see Theorem 3.3) of the
following non-local equation, for all (t, x) ∈ (0,+∞)× R,

uεt +Mε

(
uε

ε
(t, x),

[
ξε

ε
(t, ·)

])
(x) · |uεx| = 0

ξεt + Lε
(
x

ε
,
ξε

ε
(t, x),

[
uε

ε
(t, ·)

])
(x) · |ξεx| = 0.

(3.3)

The definition of Mε and Lε is postponed to the next section. We submit equation (3.3) to the
following initial condition. For all x ∈ R,{

uε(0, x) = u0(x)
ξε(0, x) = ξε0(x). (3.4)

We also assume that the initial condition satisfies the following assumption.

(A0) (Gradient bound) Let k0 = 1/h0. The functions u0 and ξε0 are Lipschitz continuous
functions, such that

−k0 ≤ (u0)x ≤ 0 (3.5)

−k0 ≤ (ξε0)x ≤ 0, (3.6)

and

0 ≤ ξε0(x)− u0(x) ≤ ε. (3.7)

Remark 3.1. The initial conditions u0 and ξε0 are "regular" functions such that for all ε > 0 we
have

ρε(0, x) =
⌊
u0(x)
ε

⌋
and σε(0, x) =

⌊
ξε0(x)
ε

⌋
. (3.8)

For ε = 1, the conditions on the gradients translate the fact that at the initial time there is at
least h0 meters between two consecutive vehicles. In the rest of the paper we are interested in the
behaviour of ρε and σε as ε goes to 0. This in fact translates to studying the behaviour of the traffic
as the number of vehicles per unit length goes to infinity. For ε = 1 condition (3.7) translate the
fact that at initial time the velocity of the vehicles must be bounded so the ordering of the vehicles
is kept.

The fact that ξε0 depends on ε comes from the rescaling. In fact, given that σε is the "cumulative
distribution function" of (Ξj)j which are defined using the velocity of the vehicles, an ε appears
multiplying the velocity when rescaling (see [12, Remark 1.2]). Therefore, ξε0 tends to u0 as ε goes
to zero. Finally, to simplify the notations, we denote by ξ0 = ξε0 for ε = 1.

3.2 Convergence result
Theorem 2.4 is a consequence of the following theorems. The proof of Theorem 3.2 is postponed
until Section 7 and the proof of Theorem 3.3 is postponed until Section 9.

Theorem 3.2 (Junction condition by homogenization). Assume (A) and (A0). For ε > 0, let
(uε, ξε) be the solution of (3.3)-(3.4). Then there exists Ā ∈ [H0, 0] such that uε and ξε converge
locally uniformly to the unique viscosity solution u0 of (2.7).
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Theorem 3.3 (Junction condition by homogenization: application to traffic flow). Assume (A)
and that at the initial time (Ui(0),Ξi(0))i satisfies

0 ≤ Ξi(0)− Ui(0) ≤ Vmax
α

, Ui+1(0)− Ξi(0) ≥ h0, and Ui+1(0)− Ui(0) ≤ hmax.

We define two function u0 and ξε0 satisfying (A0) such that for all ε > 0,

ρε(0, x) = ε

⌊
u0(x)
ε

⌋
and σε(0, x) = ε

⌊
ξε0(x)
ε

⌋
,

then there exists a unique A ∈ [H0, 0] such that the functions ρε and σε defined by (2.2) and (3.2)
converge locally uniformly towards the unique solution u0 of (2.7).

The following theorem ensures that when we use (2.7) we only evaluate the function H in the
interval [−k0, 0]. The proof of Theorem 3.4 is postponed until Section 7.

Theorem 3.4 (Gradient bound). Assume (A0)-(A). Let u0 be the unique solution of (2.7), then
we have for all (t, x) ∈ [0, T ]× R,

−k0 ≤ u0
x ≤ 0,

with k0 defined in (A0).

3.3 Definition of the non-local operators
In this section, we clarify equation (3.3). We will give the definition of M and L, and then the
definition of Mε and Lε. To do this, we first introduce the following functions.

E(z) =
{
−α if z ≥ 0
0 if z < 0,

F (z) =
{

1 if z < 0
0 if z ≥ 0,

I(z) =
{

1 if z ≥ −1
0 if z < −1,

Ẽ(z) =
{
−α if z > 0
0 if z ≤ 0,

F̃ (z) =
{

1 if z ≤ 0
0 if z > 0,

and Ĩ(z) =
{

1 if z > −1
0 if z ≤ −1.

For x, p ∈ R, we then define the following non-local operators

Mp (U(x), [Σ]) (x) =
∫ D

0
E(Σ(x+ z)− U(x) + pz)dz,

Kp (Σ(x), [U ]) (x) =
∫ D

0
F (U(x− z)− Σ(x)− pz)dz,

Np (Σ(x), [U ]) (x) =
∫ D

0
I(U(x+ z)− Σ(x) + pz)dz,

with D = hmax + 3Vmax/(2α) + 2r/φ0 (see Appendixes A and B for more details on where the
constant D comes from). We can now define Lp. For x, y ∈ R,

Lp (y,Σ(x), [U ]) (x) =αKp (Σ(x), [U ]) (x) (3.9)

− 2V
(
Np (Σ(x), [U ]) (x) +Kp (Σ(x), [U ]) (x)

)
· φ (y −Kp (Σ(x), [U ]) (x)) .

In the same way, we define M̃p, K̃p and Ñp by replacing E,F and I respectively by Ẽ, F̃ and Ĩ.
Similary,

L̃p (y,Σ(x), [U ]) (x) =αK̃p (Σ(x), [U ]) (x) (3.10)

− 2V
(
Ñp (Σ(x), [U ]) (x) + K̃p (Σ(x), [U ]) (x)

)
· φ
(
y − K̃p (Σ(x), [U ]) (x)

)
.
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For p = 0, we define

M(U(x), [Σ])(x) := M0(U(x), [Σ]) =
∫ D

0
E(Σ(x+ z)− U(x))dz, (3.11)

K (Σ(x), [U ]) (x) := K0 (Σ(x), [U ]) (x) =
∫ D

0
F (U(x− z)− Σ(x))dz, (3.12)

N (Σ(x), [U ]) (x) := N0 (Σ(x), [U ]) (x) =
∫ D

0
I(U(x+ z)− Σ(x))dz, (3.13)

and

L (y,Σ(x), [U ]) (x) =αK (Σ(x), [U ]) (x) (3.14)

− 2V
(
N (Σ(x), [U ]) (x) +K (Σ(x), [U ]) (x)

)
· φ (y −K (Σ(x), [U ]) (x)) .

Remark 3.5 (Remarks on the non-local operators). First let us notice that the domain of inte-
gration in the non-local operators is bounded by a constant D := hmax + 3Vmax/(2α) + 2r/φ0, this
comes from the fact that the velocities of the vehicles as well as the distance between two consecu-
tive vehicles from model 3.1 are bounded (see Appendix A). In particular, there exists a constant
M0 > 0 (independent of p), such that we have the following bounds on the non-local operators,

−M0 ≤ −αD ≤Mp(U(x), [Σ])(x) ≤ 0,
M0 ≥ D ≥ Kp(Σ(x), [U ])(x) ≥ 0,
M0 ≥ D ≥ Np(Σ(x), [U ])(x) ≥ 0,

M0 ≥ αD ≥ Lp(y,Σ(x), [U ])(x) ≥ −2Vmax ≥ −M0,

with M0 = max(2Vmax, αD,D).
Finally, we would like to point out that given the fact that the function V is non-decreasing

(assumption (A2)) and that the function F ≥ 0 and therefore K(Σ, [U ])(x) ≥ 0, we have

L(y,Σ(x), [U ])(x) ≥ −2V
(
N (Σ(x), [U ]) (x)

)
. (3.15)

Finally, we introduce for ε > 0,

Mε (U(x), [Σ]) (x) =
∫ D

0
E(Σ(x+ εz)− U(x))dz, (3.16)

Kε (Σ(x), [U ]) (x) =
∫ D

0
F (U(x− εz)− Σ(x))dz, (3.17)

Nε (Σ(x), [U ]) (x) =
∫ D

0
I(U(x+ εz)− Σ(x))dz, (3.18)

(3.19)

and

Lε (y,Σ(x), [U ]) (x) =αKε (Σ(x), [U ]) (x) (3.20)

− 2V
(
Nε ((Σ(x), [U ]) (x) +Kε (Σ(x), [U ]) (x)

)
· φ (y −Kε (Σ(x), [U ]) (x)) .

The bounds provided by Remark 3.5 remain valid for the non-local operators depending on
ε > 0.

Remark 3.6 (Lagrangian formulation). Another way to treat this problem is to consider a La-
grangian formulation, like in [12], considering the functions,

u(t, y) = Ubyc(t) and ξ(t, y) = Σbyc(t).
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The couple (u, ξ) satisfies for all (t, y) ∈ [0, T ]× R
ut(t, y) = α (ξ(t, y)− u(t, y))
ξt(t, y) = α (u(t, y)− ξ(t, y)) + 2V (u(t, y + 1)− u(t, y)) · φ(u(t, y))
u(0, y) = u0(y)
ξ(0, y) = ξε0(y).

We note that the system we obtain is much more simple. Nevertheless, the difficulty with this
formulation is that the function φ is evaluated at u(t, y) and not at a physical point of the road.
At the macroscopic scale, we then expect to get a junction condition located at u = 0. The notion
of junction in this case is not well defined and this is why we use the formulation (3.3)(where the
perturbation function is evaluated at a point of the road). This will allow us to use the results of
Imbert and Monneau [19] concerning quasi-convex Hamiltonians with a junction condition.

4 Viscosity Solutions
This section is devoted to the definition and useful results for viscosity solutions of the problems
considered in this paper. The reader is referred to the user’s guide of Crandall, Ishii, Lions [6]
and the book of Barles [5] for an introduction to viscosity solutions. In order to give a general
definition, we will give the definition of viscosity solutions for the following equation, with p ∈ R,
and for all (t, x) ∈ (0,+∞)× R,

ut + ψ(x) ·Mp (u(t, x), [ξ(t, ·)]) (x) · |p+ ux|+ (1− ψ(x)) ·H (ux) = 0
ξt + ψ(x) · Lp (x, ξ(t, x), [u(t, ·)]) (x) · |p+ ξx|+ (1− ψ(x)) ·H (ξx) = 0
u(0, x) = u0(x)
ξ(0, x) = ξ0(x),

(4.1)

with ψ : R → [0, 1] a Lipschitz continuous function. We also use the following notations for the
upper and lower semi-continuous envelopes of a locally bounded function u:

u∗(t, x) = lim sup
s→t,y→x

u(s, y) and u∗(t, x) = lim inf
s→t,y→x

u(s, y).

4.1 Definitions
Definition 4.1 (Viscosity solutions for (4.1)). Let T > 0. Let u : R+×R→ R and ξ : R+×R→ R
be upper semi-continuous (resp. lower semi-continuous) functions. We say that (u, ξ) is a viscosity
sub-solution (resp. super-solution) of (4.1) on [0, T ] × R if u(0, x) ≤ u0(x) and ξ(0, x) ≤ ξ0(x)
(resp. u(0, x) ≥ u0(x) and ξ(0, x) ≥ ξ0(x)) and for all (t, x) ∈ (0, T )×R, and for any test function
ϕ ∈ C1((0, T )×R) such that u−ϕ attains a local maximum (resp. a local minimum) at the point
(t, x), we have

ϕt + ψ(x) ·Mp (u(t, x), [ξ(t, ·)]) (x) · |p+ ϕx|+ (1− ψ(x)) ·H(ϕx) ≤ 0,
(resp. ϕt + ψ(x) · M̃p (u(t, x), [ξ(t, ·)]) (x) · |p+ ϕx|+ (1− ψ(x)) ·H(ϕx) ≥ 0),

and for all (t, x) ∈ (0, T )× R and any test function ϕ ∈ C1((0, T )× R) such that ξ − ϕ attains a
local maximum (resp. a local minimum) at the point (t, x), we have

ϕt + ψ(x) · Lp (x, ξ(t, x), [u(t, ·)]) (x) · |p+ ϕx|+ (1− ψ(x)) ·H(ϕx) ≤ 0,

(resp. ϕt + ψ(x) · L̃p (x, ξ(t, x), [u(t, ·)]) (x) · |p+ ϕx|+ (1− ψ(x)) ·H(ϕx) ≥ 0).

We say that (u, ξ) is a viscosity solution of (4.1) if (u∗, ξ∗) and (u∗, ξ∗) are respectively a sub-
solution and a super-solution of (4.1).
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Proposition 4.2 (Stability result for (4.1)). Let (un, ξn) be a sequence of uniformly bounded upper
semi-continuous functions (resp. lower semi-continuous) and let (pn)n be such that pn → p. We
assume that (un, ξn) is a sub-solution (resp. a super-solution) of (4.1) with p = pn. Let (u, ξ) =
(lim sup∗un, lim sup∗ ξn) (resp. (u, ξ) = (lim inf∗un, lim inf∗ ξn)). Then (u, ξ) (resp. (u, ξ)) is a
sub-solution (resp. a super-solution) of (4.1).

Proof. The proof is classical and we refer to [10]. The only point to note is that both Hamiltonians
in (4.1) are monotone with respect to the non-local operators (this is a consequence of assumption
(A7) for the non-local operator Kp).

4.2 Viscosity solutions for (2.7)
The theory of viscosity solutions for Hamilton-Jacobi equations on networks was recently treated
in several papers. We give here some results for viscosity solutions of (2.7) that will be used in
the rest of paper and we refer to [19] for the general theory and for the proofs.

Definition 4.3 (Class of test function for (2.7)). We denote by J∞ := (0,+∞)× R,
J+
∞ := (0,+∞) × (0,+∞) and J−∞ := (0,+∞) × (−∞, 0) , we define a class of test function on
J∞ by

C1(J∞) = {ϕ ∈ C(J∞), the restriction of ϕ to J+
∞ and to J−∞ are C1}.

Definition 4.4 (Viscosity solution for (2.7)). An upper semi-continuous (resp. lower semi-
continuous) function u : [0,+∞) × R → R is a viscosity sub-solution (resp. super-solution) of
(2.7) if u(0, x) ≤ u0(x) (resp. u(0, x) ≥ u0(x)) and for all (t, x) ∈ J∞ and for all ϕ ∈ C1(J∞)
such that

u ≤ ϕ (resp. u ≥ ϕ) in a neighbourhood of (t, x) ∈ J∞ and u(t, x) = ϕ(t, x), we have

ϕt(t, x) +H(ϕx(t, x)) ≤ 0 (resp. ≥ 0) if x 6= 0
ϕt(t, x) + FA(ϕx(t, 0−), ϕx(t, 0+)) ≤ 0 (resp. ≥ 0) if x = 0.

We say that a function u is a viscosity solution of (2.7) if u∗ and u∗ are respectively a sub-solution
and a super-solution of (2.7).We refer to this solution as A-flux-limited solution.

Now we recall an equivalent definition (Theorem 2.5 in [19]) for sub and super solution at the
junction. We will also consider the following problem,

ut +H(ux) = 0 for t ∈ (0, T ) and x ∈ R\{0}. (4.2)

Theorem 4.5 (Equivalent definition for sub/super-solutions). Let H given by (2.4) and consider
A ∈ [H0,+∞) with H0 defined in (2.6). Given arbitrary solutions pA± ∈ R of

H
(
pA+
)

= H
+ (
pA+
)

= A = H
− (
pA−
)

= H
(
pA−
)
, (4.3)

let us fix any time independent test function φ0(x) satisfying

φ0
x(0±) = pA±.

Given a function u : (0, T )× R→ R, the following properties hold true.

1. If u is an upper semi-continuous sub-solution of (4.2) satisfying

u(t, 0) = lim sup
(t,y)→(t,0),y∈J∗

i

u(s, y), (4.4)

then u is a H0-flux limited sub-solution.
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2. Given A > H0 and t0 ∈ (0, T ), if u is an upper semi-continous sub-solution of (4.2) satisfying
(4.4) and if for any test function ϕ touching u from above at (t0, 0) with

ϕ(t, x) = ψ(t) + φ0(x), (4.5)

for some ψ ∈ C1(0,+∞), we have

ϕt + FA
(
ϕx
(
t0, 0−

)
, ϕx

(
t0, 0+)) ≤ 0 at (t0, 0),

then u is a A-flux limited sub-solution at (t0, 0).

3. Given t0 ∈ (0, T ), if u is a lower semi-continuous super-solution of (4.2) and if for any test
function ϕ satisfying (4.5) touching u from above at (t0, 0) we have

ϕt + FA
(
ϕx
(
t0, 0−

)
, ϕx

(
t0, 0+)) ≥ 0 at (t0, 0),

then u is a A-flux limited super-solution at (t0, 0).

4.3 Existence and uniqueness of viscosity solution for (4.1) with p = 0
We recall that for p = 0, our equation is

ut +M(u(t, x), [ξ(t, ·)])(x) · |ux| = 0 for (t, x) ∈ (0,+∞)× R,
ξt + L (x, ξ(t, x), [u(t, ·)]) (x) · |ξx| = 0 for (t, x) ∈ (0,+∞)× R,
u(0, x) = u0(x) for x ∈ R,
ξ(0, x) = ξ0(x) for x ∈ R.

(4.6)

Lemma 4.6 (Existence of barriers for (4.6)). Assume (A) and (A0). There exists a constant
K1 > 0 such that

(u−, ξ−) = (u0 −K1t, ξ0 −K1t) and (u+, ξ+) = (u0 +K1t, ξ0 +K1t) (4.7)

are respectively sub-solution and super-solution of (4.6).

Proof. We define K1 = M0k0. Let us prove that (u+, ξ+) is a super-solution of (4.6). In fact, we
have that

u+
t + M̃(u+(t, x), [ξ+(t, ·)])(x)|u+

x | ≥ K1 −M0k0 = 0,

where we have used Remark 3.5 for the second inequality. Similarly, using that K̃ ≥ 0 and
K1 ≥ 2||V ||∞k0, we have that

ξ+
t + L̃(x, ξ+(t, x), [u+(t, ·)])(x)|ξ+

t | ≥ 0.

The proof that (u−, ξ−) is a sub-solution is similar and we skip it.

Proposition 4.7 (Comparaison principle). Let T > 0. Assume (A)-(A0). Let (u, ξ) and (v, ζ)
be respectively a sub-solution and a super-solution of (4.6). We also assume that there exists a
constant C > 0 such that for all (t, x) ∈ [0, T ]× R, we have

u0(x)− Ct ≤ u(t, x) ≤ u0(x) + Ct, ξ0(x)− Ct ≤ ξ(t, x) ≤ ξ0(x) + Ct (4.8)

and

−u0(x)− Ct ≤ −v(t, x) ≤ −u0(x) + Ct, −ξ0(x)− Ct ≤ −ζ(t, x) ≤ −ξ0(x) + Ct. (4.9)

If
u(0, x) ≤ v(0, x) and ξ(0, x) ≤ ζ(0, x) for all x ∈ R,

then

u(t, x) ≤ v(t, x) and ξ(t, x) ≤ ζ(t, x) for all x ∈ R, t ∈ [0, T ].

10



Proof. Let us introduce

M = sup
t∈[0,T ],x∈R

max (u(t, x)− v(t, x), ξ(t, x)− ζ(t, x)) .

We want to prove that M ≤ 0. We argue by contradiction by assuming that M > 0.

Step 1: test functions. We introduce the following test functions

ϕ(t, x, y) = u(t, x)− v(t, y)− η

T − t
− eAt

(
(x− y)2

2ε + γ
x2

2

)
and

ψ(t, x, y) = ξ(t, x)− ζ(t, y)− η

T − t
− eAt

(
(x− y)2

2ε + γ
x2

2

)
,

with η, γ small parameters, and A a constant to be chosen later. We denote by Φ(t, x, y) =
max (ϕ(t, x, y), ψ(t, x, y)). Using (4.8) and (4.9) we have that

ϕ(t, x, y) ≤ u0(x)− u0(y) + 2CT − η

T − t
− eAt

(
(x− y)2

2ε + γ
x2

2

)
≤ 2CT + k0|x− y| −

η

T − t
− eAt

(
(x− y)2

2ε + γ
x2

2

)
.

We have a similar result for ψ which yields that

lim
|x|,|y|→+∞

Φ = −∞.

Using the fact that our test functions are upper semi continuous, we can see that Φ reaches a
maximum at some finite point that we denote by (t̄, x̄, ȳ) ∈ [0, T )×R×R. Classicaly we have for
η and γ small enough, 

Mη,ε,γ = Φ(t̄, x̄, ȳ) ≥ M

2 > 0,
|x̄− ȳ| → 0 as ε→ 0,
γ|x̄| → 0 as γ → 0.

Step 2: t̄ > 0 for ε small enough. By contradiction, let us assume that Φ reaches its maximum
for t̄ = 0. Let us for instance assume that Φ(t̄, x̄, ȳ) = ϕ(t̄, x̄, ȳ). In this case, we have

0 < M

2 ≤ u(0, x̄)− v(0, ȳ)− η

T − t
≤ k0|x̄− ȳ| −

η

T − t
.

Therefore, η
T
< k0|x̄− ȳ| and for ε small enough we get a contradiction. In the same way, we get

a contradiction if we assume that φ(t̄, x̄, ȳ) = ψ(t̄, x̄, ȳ).

Step 3: utilisation of the equation in the case Φ(t̄, x̄, ȳ) = ϕ(t̄, x̄, ȳ). By duplication of the
time variable and passing to the limit we have that there exist two real numbers a, b ∈ R such
that

a− b = η

(T − t̄)2 +AeAt̄
(

(x̄− ȳ)2

2ε + γ
x̄2

2

)
(4.10)

a+M(u(t̄, x̄), [ξ(t̄, ·)])(x̄)|eAt̄ (pε + γx̄) | ≤ 0 (4.11)
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b+ M̃(v(t̄, ȳ), [ζ(t̄, ·)])(ȳ)|eAt̄pε| ≥ 0 (4.12)

with pε = x̄− ȳ
ε

. Combining (4.10), (4.11) and (4.12), we obtain

η

(T − t̄)2 +AeAt̄
(

(x̄− ȳ)2

2ε + γ
x̄2

2

)
≤ |eAt̄pε|

(
M̃(v(t̄, ȳ), [ζ(t̄, ·)])(ȳ)−M(u(t̄, x̄), [ξ(t̄, ·)])(x̄)

)
+oγ ,

(4.13)
where we have used the fact that M(u(t̄, x̄), [ξ(t̄, ·)])(x̄) is finite according to Remark 3.5.

We distinguish two cases.

Case 1: there exists a subsequence γn such that

|x̄− ȳ|
ε

→ 0 as n→ +∞.

In this case, taking γ going to zero in (4.13) yields a contradiction.

Case 2: there exists a constant Cε > 0 such that for any γ small enough we have,

|x̄− ȳ|
ε

≥ Cε.

Changing variables in (4.13) we can write

η

(T − t̄)2 +AeAt̄
(x̄− ȳ)2

2ε ≤ |eAt̄pε|
∫ D+ȳ

ȳ

Ẽ(ζ(t̄, z)− v(t̄, ȳ))dz

− |eAt̄pε|
∫ D+x̄

x̄

E(ξ(t̄, z)− u(t̄, x̄))dz + oγ(1)

≤ |eAt̄pε|
∫ D+ȳ

ȳ

Ẽ(ζ(t̄, z)− v(t̄, ȳ))− E(ξ(t̄, z)− u(t̄, x̄))dz

+ |eAt̄pε|
∣∣∣∣∫ x̄

ȳ

E(ξ(t̄, z)− u(t̄, x̄))dz
∣∣∣∣

+ |eAt̄pε|

∣∣∣∣∣
∫ D+ȳ

D+x̄
E(ξ(t̄, z)− u(t̄, x̄))dz

∣∣∣∣∣+ oγ(1). (4.14)

We define

A =
{
z ∈ R : Ẽ

(
ζ(t̄, z)− v(t̄, ȳ)

)
≤ E

(
ξ(t̄, z)− u(t̄, x̄)

)}
.

The inequality ϕ(t̄, x̄, ȳ) ≥ ψ(t̄, z, z) yields

ζ(t̄, z)− v(t̄, ȳ) ≥ ξ(t̄, z)− u(t̄, x̄) + eAt̄
(

(x̄− ȳ)2

2ε + γ
x̄2

2 − γ
z2

2

)
.

This implies that

Ac ⊂ {|z| ≥ Rε,γ} with R2
ε,γ = 2

γ

(
(x̄− ȳ)2

2ε + γ
x̄2

2

)
.

Moreover R̃ε,γ = Rε,γ − |ȳ| → +∞ as γ → 0 (see Da Lio et al. in [7, Lemma 2.5]). This implies
that ∫ D+ȳ

ȳ

Ẽ(ζ(t̄, z)− v(t̄, ȳ))dz =
∫

[ȳ,D+ȳ)∩A
Ẽ(ζ(t̄, z)− v(t̄, ȳ))dz

+
∫

[ȳ,D+ȳ)∩Ac
Ẽ(ζ(t̄, z)− v(t̄, ȳ))dz.
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However, from Remark 3.5, we have that for γ small enough

0 ≤
∫

[ȳ,D+ȳ)∩Ac
−Ẽ(ζ(t̄, z)− v(t̄, ȳ])dz =

∫
[ȳ,D+ȳ]∩{|z|≥Rε,γ}

−Ẽ(ζ(t̄, z)− v(t̄, ȳ))dz

=
∫

[0,D]∩{|z+ȳ|≥Rε,γ}
−Ẽ(ζ(t̄, z + ȳ)− v(t̄, ȳ))dz

≤
∫

[0,D]∩{|z|≥R̃ε,γ}
−Ẽ(ζ(t̄, z + ȳ)− v(t̄, ȳ))dz

= 0.

We deduce that for γ small enough,∫ D+ȳ

ȳ

Ẽ(ζ(t̄, z)− v(t̄, ȳ))dz =
∫ D+ȳ

ȳ

E(ξ(t̄, z)− u(t̄, x̄))dz.

Then for γ small enough (4.14) implies

η

(T − t̄)2 +AeAt̄
(x̄− ȳ)2

2ε ≤
∣∣∣eAt̄pε∣∣∣

∣∣∣∣∣
∫ x̄

ȳ

E(ξ(t̄, z)− u(t̄, x̄))dz +
∫ D+ȳ

D+x̄
E(ξ(t̄, z)− u(t̄, x̄))dz

∣∣∣∣∣+ oγ

≤2αeAt̄ (x̄− ȳ)2

ε
+ oγ .

Choosing A = 4α, we get a contradiction.

Step 4: utilisation of equation in the case Φ(t̄, x̄, ȳ) = ψ(t̄, x̄, ȳ). By duplication of the time
variable and passing to the limit, we have that there exist two real numbers a, b ∈ R such that

a− b = η

(T − t̄)2 +AeAt̄
(

(x̄− ȳ)2

2ε + γ
x̄2

2

)
(4.15)

a+ L(x̄, ξ(t̄, x̄), [u(t̄, ·)])(x̄) · |eAt̄(pε + γx̄)| ≤ 0 (4.16)

b+ L̃(ȳ, ξ(t̄, ȳ), [u(t̄, ·)])(ȳ) · |eAt̄pε| ≥ 0 (4.17)

with pε = x̄−ȳ
ε . Combining (4.15), (4.16) and (4.17), we obtain that

η

(T − t̄)2 +AeAt̄
(x̄− ȳ)2

2ε ≤ |eAt̄pε|
(
L̃(ȳ, ξ(t̄, ȳ), [u(t̄, ·)])(ȳ)− L(x̄, ξ(t̄, x̄), [u(t̄, ·)])(x̄)

)
+ oγ .(4.18)

We recall that we defined L and L̃ using K and V (see (3.9) and (3.10)). Therefore, we can see
that the right part of inequality (4.18) is finite (using Remark 3.5). We distinguish two cases.

Case 1: there exists a subsequence γn such that

|x̄− ȳ|
ε

→ 0 as n→ +∞.

In this case, taking γ to zero in (4.18) yields a contradiction.
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Case 2: there exists a constant Cε > 0, such that for any γ small enough we have

|x̄− ȳ|
ε

≥ Cε.

To simplify, we introduce

L = L(x̄, ξ(t̄, x̄), u[(t̄, ·)])(x̄) L̃ = L̃(ȳ, ζ(t̄, ȳ), [v(t̄, ·)])(ȳ),
K = K(ξ(t̄, x̄), [u(t̄, ·)])(x̄) K̃ = K̃(ζ(t̄, ȳ), [v(t̄, ·)])(ȳ),
N = N(ξ(t̄, x̄), [u(t̄, ·)])(x̄) Ñ = Ñ(ζ(t̄, ȳ), [v(t̄, ·)])(ȳ).

As above, we can prove

K̃ −K ≤ |x̄− ȳ| and N − Ñ ≤ |x̄− ȳ|.

We have that

L̃− L = αK̃ − 2V
(
Ñ + K̃

)
φ
(
ȳ − K̃

)
− L

≤ α (K + |x̄− ȳ|)− 2V
(
Ñ +K + |x̄− ȳ|

)
φ (ȳ −K − |x̄− ȳ|)− L

≤ α (K + |x̄− ȳ|)− 2V (N +K)φ (ȳ −K − |x̄− ȳ|)− L
≤ α|x̄− ȳ|+ 2V (N +K) (φ (x̄−K)− φ (ȳ −K − |x̄− ȳ|))
≤ α|x̄− ȳ|+ 2 ||V ||∞ ||φ

′||∞|x̄− ȳ|, (4.19)

where we have used for the first inequality the monotonicity (see Remark 2.2). The monotonic-
ity of V yields the second inequality. The third and the final inequalities come from the definition
of L and the fact that φ and V are Lipschitz functions. Finally, combining (4.19) with (4.18), we
obtain

η

(T − t̄)2 +AeAt̄
(x̄− ȳ)2

2ε ≤ eAt̄ (x̄− ȳ)2

ε
(α+ 2 ||V ||∞ ||φ

′||∞) + oγ(1). (4.20)

Taking A = 2 (α+ 2 ||V ||∞ ||φ′||∞), we get a contradiction in (4.20). The proof of Proposition
4.7 is now complete.

We now give a comparison principle on bounded sets, to do this, we define for a given point
(t0, x0) ∈ (0, T )× R and for r,R > 0, the set

Qr,R(t0, x0) = (t0 − r, t0 + r)× (x0 −R, x0 +R).

Proposition 4.8 (Comparison principle on bounded sets for (4.6)). Assume (A). Let (u, ξ) be a
sub-solution of (4.6) and let (v, ζ) be a super-solution of (4.6) on the open set Qr,R ⊂ (0, T )×R.
Also assume that

u ≤ v and ξ ≤ ζ outside Qr,R,

then

u ≤ v and ξ ≤ ζ on Qr,R.

Applying Perron’s method (see [20, Proof of Theorem 6], [2] or [18] to see how to apply
Perron’s method for problems with non-local terms), joint to the comparison principle, we obtain
the following result.

Theorem 4.9 (Existence and uniqueness of viscosity solutions for (4.6)). Assume (A0) and (A).
Then, there exists a unique solution (u, ξ) of (4.6). Moreover, the functions u and ξ are continuous
and there exists a constant K1 > 0 such that

u0(x)−K1t ≤ u(t, x) ≤ u0(x) +K1t and ξ0(x)−K1t ≤ ξ(t, x) ≤ ξ0(x) +K1t. (4.21)
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4.4 Control of the oscillations for (4.6)
We now present a theorem that provides a control on the oscillations in space of the solution of
(4.6). This is a very important theorem, first because it will allow us to prove Theorem 3.4 and
also because it presents some of the arguments we use later to build the correctors at the junction.

Theorem 4.10 (Control of the space oscillations). Let T > 0. Assume (A0)-(A) and let (u, ξ) be
the solution of (4.6) provided by Theorem 4.9. Then for all x, y ∈ R, x ≥ y and for all t ∈ [0, T ],
we have

−k0(x− y)− 1 ≤ u(t, x)− u(t, y) ≤ 0 (4.22)

and

−k0(x− y)− 1 ≤ ξ(t, x)− ξ(t, y) ≤ 0, (4.23)

with k0 defined in (A0).

Proof. We use the following notation,

Ω = {(t, x, y) ∈ [0, T ]× R× R s.t. x ≥ y} .

Proof of the upper bound. We introduce

M = sup
(t,x,y)∈Ω

max (u(t, x)− u(t, y), ξ(t, x)− ξ(t, y)) .

We want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

Step 1: the test functions. For η, γ > 0 small parameters, we define

ϕ(t, x, y) = u(t, x)− u(t, y)− η

T − t
− γx2 − γy2

and

ψ(t, x, y) = ξ(t, x)− ξ(t, y)− η

T − t
− γx2 − γy2.

We denote by Φ(t, x, y) = max (ϕ(t, x, y), ψ(t, x, y)). For x ≥ y, using (4.21) and (A0) we have

ϕ(t, x, y) ≤ u0(x)− u0(y) + 2K1T −
η

T − t
− γx2 − γy2 ≤ 2K1T − γx2 − γy2

ψ(t, x, y) ≤ ξ0(x)− ξ0(y) + 2K1T −
η

T − t
− γx2 − γy2 ≤ 2K1T − γx2 − γy2.

Therefore, we deduce

lim
|x|,|y|→+∞

Φ(t, x, y) = −∞.

Since ϕ,ψ are upper semi continuous, Φ reaches a maximum on Ω at a point that we denote by
(t̄, x̄, ȳ). Classically we have for η and γ small enough0 < M

2 ≤ Φ(t̄, x̄, ȳ),
γ|x̄|, γ|ȳ| → 0 as γ → 0.
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Step 2: t̄ > 0 and x̄ > ȳ. By contradiction, assume first that t̄ = 0. For instance, we assume
that Φ(t̄, x̄, ȳ) = ϕ(t̄, x̄, ȳ). In this case, we have that

η

T
≤ u0(x̄)− u0(ȳ) ≤ 0,

where we have used the fact that u0 is non increasing, and we get a contradiction. In the same
way, we get a contradiction if Φ(t̄, x̄, ȳ) = ψ(t̄, x̄, ȳ). The fact that x̄ > ȳ is obtained directly using
that Φ(t̄, x̄, ȳ) > 0.

Step 3: utilisation of the equation in the case Φ(t̄, x̄, ȳ) = ϕ(t̄, x̄, ȳ). By duplication of
the time variable and passing to the limit we get that

η

T 2 ≤
η

(T − t̄)2 ≤ −M(u(t̄, x̄), [ξ(t̄, ·)])(x̄) · |2γx̄|, (4.24)

where we have used the fact that M̃(u(t̄, ȳ), [ξ(t̄, ·)])(ȳ) ≤ 0. Using Remark 3.5, we have that
−M(u(t̄, x̄), [ξ(t̄, ·)])(x̄) is bounded. Taking γ to zero, we get a contradiction in (4.24).

Step 4: utilisation of equation in the case Φ(t̄, x̄, ȳ) = ψ(t̄, x̄, ȳ). By duplication of the
time variable and passing to the limit we get that

η

(T − t̄)2 ≤ L̃(ȳ, ξ(t̄, ȳ), [u(t̄, ·)])(ȳ)|2γȳ| − L(x̄, ξ(t̄, x̄), [u(t̄, ·)])(x̄)|2γx̄|

≤ 2M0 (|γx̄|+ |γȳ|)

where we have used the bounds on L and L̃ (see Remark 3.5). Taking γ to zero, we get a
contradiction.

Proof of the lower bound. In order to prove our result, we will use the following lemma which
proof is postponed.

Lemma 4.11. For all (t, x) ∈ [0, T ]× R, we have

0 ≤ ξ(t, x)− u(t, x) ≤ 1. (4.25)

Now we would like to prove that for all ε > 0,

M = sup
(t,x,y)∈Ω

{ξ(t, y)− u(t, x)− (k0 + ε)(x− y)− 1} ≤ 0. (4.26)

In fact, if (4.26) is true, then taking ε to 0 and using (4.25) we directly obtain the lower inequalities
in (4.22) and (4.23). We argue by contradiction and assume that M > 0.

Step 1: the test function. For η, γ > 0 small parameters, we define

ϕ(t, x, y) = ξ(t, y)− u(t, x)− (k0 + ε)(x− y)− 1− η

T − t
− γx2.

Using (A0) and (4.21), we obtain that

ϕ(t, x, y) ≤ ξ0(y)− u0(x) + 2K1T − (k0 + ε)(x− y)− 1− η

T − t
− γx2

≤ 1 + k0(x− y) + 2K1T − (k0 + ε)(x− y)− 1− η

T − t
− γx2

≤ 2K1T − γx2 − ε(x− y).
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Therefore, we have that for (t, x, y) ∈ Ω

lim
|x|,|y|→+∞

ϕ(t, x, y) = −∞.

Since ϕ is upper semi continuous, ϕ reaches a maximum on Ω at a point that we denote by (t̄, x̄, ȳ).
Classically we have for η and γ small enough0 < M

2 ≤ ϕ(t̄, x̄, ȳ),
γ|x̄| → 0 as γ → 0.

Step 2: t̄ > 0 and x̄ > ȳ. By contradiction, assume first that t̄ = 0. Using (A0), we get a
contradiction writing that

η

T
< ξ0(ȳ)− u0(x̄)− (k0 + ε)(x̄− ȳ)− 1 ≤ 1 + k0(x̄− ȳ)− (k0 + ε)(x̄− ȳ)− 1 ≤ 0.

If we assume that x̄ = ȳ then, using the fact that ϕ(t̄, x̄, ȳ) > 0, we get that

0 < ξ(t̄, x̄)− u(t̄, x̄)− 1− η

T − t̄
≤ 1− 1− η

T
= − η

T
.

This inequality yields a contradiction.

Step 3: utilisation of the equation. By duplication of the time variable and passing to
the limit we get that

η

(T − t̄)2 ≤ M̃(u(t, x̄), [ξ(t, ·)])(x̄) · |2γx̄+ k0 + ε| − L(ȳ, ξ(t̄, ȳ), [u(t̄, ·)])(ȳ) · |k0 + ε|

≤ −L(ȳ, ξ(t̄, ȳ), [u(t̄, ·)])(ȳ) · |k0 + ε|,

where we have used the fact that M̃(u(t̄, x̄), [ξ(t̄, ·)])(x̄) ≤ 0. We replace L by its definition (3.14)
and using (3.15), we have

η

(T − t̄)2 ≤ 2V
(
N(ξ(t̄, ȳ), [u(t̄, ·)])(ȳ)

)
|k0 + ε|. (4.27)

Now we want to prove that N(ξ(t̄, ȳ), [u(t̄, ·)])(ȳ) ≤ h0. Indeed, if it is true, we will get a contra-
diction in (4.27) because V (h) = 0 ∀h ≤ h0. Let then z > h0.

If ȳ + z ≥ x̄, then using that u(t̄, .) is non increasing, we get that

u(t̄, ȳ + z)− ξ(t̄, ȳ) ≤ u(t̄, x̄)− ξ(t̄, ȳ) < −k0(x̄− ȳ)− 1 < −1.

If ȳ + z < x̄, using the fact that ϕ(t̄, x̄, ȳ + z) ≤ ϕ(t̄, x̄, ȳ), we obtain

ξ(t̄, ȳ + z)− ξ(t̄, ȳ) < −k0z ≤ −1.

Using Lemma 4.11, we get that u(t̄, ȳ+z)−ξ(t̄, ȳ) < −1. We deduce that I(u(t̄, ȳ+z)−ξ(t̄, ȳ)) = 0
for z ≥ h0 and so N(ξ(t̄, ȳ), [u(t̄, .)])(ȳ) ≤ h0.

We now turn to the proof of Lemma 4.11.

Proof of Lemma 4.11. The proof is divided into several steps.

Step 1: proof of the lower bound. We introduce

M = sup
(t,x)∈[0,T ]×R

{u(t, x)− ξ(t, x)} .

We want to prove that M ≤ 0 and argue by contradiction by assuming that M > 0.
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Step 1.1: the test function. Let η, γ be small parameters, and A a constant to be chosen
later. We introduce

ϕ(t, x, y) = u(t, x)− ξ(t, y)− η

T − t
− eAt (x− y)2

2ε − γx2.

Classically, ϕ reaches a maximum on [0, T ]×R×R at (t̄, x̄, ȳ) and we have for η, γ small enough,
0 < M

2 ≤ ϕ(t̄, x̄, ȳ),
γx̄→ 0 as γ → 0,
|x̄− ȳ| → 0 as ε→ 0.

Step 1.2: t̄ > 0 for ε small enough. We assume by contradiction that t̄ = 0. We have
that

0 < u0(x̄)− ξ0(ȳ)− η

T
≤ k0|x̄− ȳ| −

η

T
.

Taking ε small enough, we get a contradiction.

Step 1.3: utilisation of equation. By duplication of the time variable and passing to the
limit, we get that

η

(T − t̄)2 +AeAt̄
(x̄− ȳ)2

2ε ≤
∣∣∣∣eAt̄ x̄− ȳε

∣∣∣∣ (L̃(ȳ, ξ(t̄, ȳ), [u(t̄, ·)])(ȳ)−M(u(t̄, x̄), [ξ(t̄, ·)])(x̄)
)

+ oγ(1)

≤
∣∣∣∣eAt̄ x̄− ȳε

∣∣∣∣ (αK̃(ξ(t̄, ȳ), [u(t̄, ·)])(ȳ)−M(u(t̄, x̄), [ξ(t̄, ·)])(x̄)
)

+ oγ(1),

(4.28)

where we have used the fact that V ≥ 0. We claim that

−M(u(t̄, x̄), [ξ(t̄, ·)])(x̄) ≤ α|x̄− ȳ| and K̃(ξ(t̄, ȳ), [u(t̄, ·)])(ȳ) ≤ |x̄− ȳ|. (4.29)

Indeed, for z > |x̄− ȳ|, using that ξ(t̄, ·) is non increasing and that ϕ(t̄, x̄, ȳ) > 0, we have that

ξ(t̄, x̄+ z)− u(t̄, x̄) ≤ ξ(t̄, ȳ)− u(t̄, x̄) < 0.

Therefore, using the definition of E we obtain that (for ε small enough such that |x̄− ȳ| ≤ D)

−M(u(t̄, x̄), [ξ(t̄, ·)])(x̄) = −
∫ |x̄−ȳ|

0
E(ξ(t̄, x̄+ z)− u(t̄, x̄))dz ≤ α|x̄− ȳ|.

Similarly, using the fact that u(t̄, ·) is non increasing, for all z > |x̄− ȳ|, we have that

u(t̄, ȳ − z)− ξ(t̄, ȳ) ≥ u(t̄, x̄)− ξ(t̄, ȳ) > 0.

Therefore,

K̃(ξ(t̄, ȳ), [u(t̄, ·)])(ȳ) =
∫ |x̄−ȳ|

0
F̃ (u(t̄, ȳ − z)− ξ(t̄, ȳ))dz ≤ |x̄− ȳ|.

This ends the proof of (4.29). Injecting (4.29) into (4.28), we get that

η

(T − t̄)2 +AeAt̄
(x̄− ȳ)2

2ε ≤ 2αeAt̄ (x̄− ȳ)2

ε
+ oγ(1).

Taking A = 4α, we get a contradiction for γ small enough.
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Step 2: proof of the upper bound. We introduce

M = sup
(t,x)∈[0,T ]×R

{ξ(t, x)− u(t, x)− 1} .

We want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.
Let η, γ be small parameters. We consider

ϕ(t, x, y) = ξ(t, x)− u(t, y)− 1− η

T − t
− (x− y)2

2ε − γx2.

Classically, ϕ reaches a maximum on [0, T ] × R × R at (t̄, x̄, ȳ) and we have the following result
for η and γ small enough 

0 < M

2 ≤ ϕ(t̄, x̄, ȳ),
|γx̄| → 0 as γ → 0,
|x̄− ȳ| → 0 as ε→ 0.

(4.30)

As in the previous Step 1.2, we get that t̄ > 0.
By duplication of the time variable and passing to the limit we then get that

η

(T − t̄)2 ≤
(
M̃(u(t̄, ȳ), [ξ(t̄, ·)])(ȳ)− L(x̄, ξ(t̄, x̄), [u(t̄, ·)])(x̄)

) ∣∣∣∣ x̄− ȳε
∣∣∣∣+ oγ(1)

≤ 2V
(
N(ξ(t̄, x̄), [u(t̄, ·)])(x̄)

) ∣∣∣∣ x̄− ȳε
∣∣∣∣+ oγ(1),

(4.31)

where we have used the fact that M̃ ≤ 0 and (3.15). We want to prove that N(ξ(t̄, x̄), [u(t̄, ·)])(x̄) ≤
h0. In fact for all z ≥ h0, we have that x̄+ z > ȳ for ε small enough, so using that ϕ(t̄, x̄, ȳ) > 0
we get that

u(t̄, x̄+ z)− ξ(t̄, x̄) ≤ u(t̄, ȳ)− ξ(t̄, x̄) < −1.

We deduce that N(ξ(t̄, x̄), [u(t̄, .)])(x̄) =
∫ h0

0 I(u(t̄, x̄ + z) − ξ(t̄, x̄))dz ≤ h0. Using that V (h) = 0
for h ≤ h0, we get a contradiction in (4.31) for γ small enough.

5 Effective Hamiltonian and effective flux-limiter
In this section we provide a justification for the definition of the effective Hamiltonian H provided
in (2.4), we use the following proposition.

Proposition 5.1. (Homogenization left and right of the perturbation) . Assume (A). Then for
every p ∈ [−k0, 0], there exists a unique λ ∈ R, such that there exists a bounded solution (w,χ) of

{
Mp (w(x), [χ]) (x)|p+ wx| = λ(
αKp (χ(x), [w]) (x)− 2V

(
Np (χ(x), [w]) (x) +Kp (χ(x), [w]) (x)

))
|p+ χx| = λ

x ∈ R (5.1)

Moreover, for p ∈ [−k0, 0], we have λ = H(p) = −V
(
−1
p

)
|p|.

Proof. We claim that (w,χ) =
(

0,− p
α
V

(
−1
p

))
is a solution of (5.1) for λ = −|p|V

(
−1
p

)
.

-If p = 0, the result is obvious.
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-If p ∈ [−k0, 0), since −p
α
V

(
−1
p

)
+ pz ≥ 0 if and only if z ∈ [0, V (−1/p) /α], then we have

Mp (w(x), [χ]) (x) =
∫ D

0
E

(
− p
α
V

(
−1
p

)
+ pz

)
dz = −V

(
−1
p

)
, (5.2)

we recall thatD = hmax+3Vmax/(2α)+2r/φ0. Similarly, for all z > 0, we have p
α
V

(
−1
p

)
−pz < 0

if and only if z < V (−1/p) /α, then

Kp (χ(x), [w]) (x) =
∫ D

0
F

(
p

α
V

(
−1
p

)
− pz

)
dz = 1

α
V

(
−1
p

)
. (5.3)

Finally, by definition we have that

Np (χ(x), [w]) (x) =
∫ D

0
I

(
p

α
V

(
−1
p

)
+ pz

)
dz.

First, notice that thanks to assumption (A7), for all p ∈ [−k0, 0), we have 1
α
V

(
−1
p

)
+ 1
p
< 0.

Moreover, p
α
V

(
−1
p

)
+ pz > −1 for z < −1

α
V

(
−1
p

)
− 1
p
. We distinguish two cases.

Case 1: −1
α
V

(
−1
p

)
− 1
p
≤ D. In this case, we have

Np (χ(x), [w]) (x) = −1
α
V

(
−1
p

)
− 1
p

and
Np (χ(x), [w]) (x) +Kp (χ(x), [w]) (x) = −1

p
. (5.4)

Finally, using (5.2), (5.3), and (5.4), we obtain our desired result.

Case 2: −1
α
V

(
−1
p

)
− 1
p
> D. In particular we have −1/p ≥ hmax. Therefore, we have

Np (χ(x), [w]) (x) = D and Kp (χ(x), [w]) (x) = Vmax
α

,

this implies that

Np (χ(x), [w]) (x) +Kp (χ(x), [w]) (x) = D + Vmax
α

> hmax.

Combining this result to (5.3), we obtain(
αKp (χ(x), [w]) (x)− 2V

(
Np (χ(x), [w]) (x) +Kp (χ(x), [w]) (x)

))
|p| =− Vmax|p|

=− V
(
−1
p

)
· |p|.

(5.5)

Using (5.2) and (5.5), we obtain our desired result. The proof is now complete.
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6 Correctors for the junction
In order to obtain an homogenization result, we need to find the effective flux-limiter. That is
why we consider the following cell problem: find λ ∈ R such that there exists a solution (w,χ) of
the following Hamilton-Jacobi equation, for x ∈ R,{

M (w(x), [χ(·)]) · |wx| = λ
L (x, χ(x), [w(·)]) (x) · |χx| = λ.

(6.1)

In this section we present a result of existence of correctors for the junction, which will be used
for the proof of Theorem 3.2. We use the following notation: given A ∈ R, A ≥ H0, we define two
real numbers p− and p+ defined by

H(p+) = H
+(p+) = H(p−) = H

−(p−) = A. (6.2)

Given the form of H, there exists only one couple of real numbers satisfying (6.2).

Theorem 6.1 (Existence of global corrector for the junction). Assume (A).
i) (General properties) There exists a constant A ∈ [H0, 0] such that there exists a solution

(w,χ) of (6.1) with λ = A and such that there exists a constant C > 0 and a globally Lipschitz
continuous function m such that for all x ∈ R,

|w(x)−m(x)| ≤ C and |χ(x)−m(x)| ≤ C. (6.3)

ii) (Bound from below at infinity) If A > H0, then there exists a γ0 > 0 such that for every
γ ∈ (0, γ0), we have for all x ≥ r + Vmax/α and h ≥ 0,

w(x+ h)− w(x) ≥ (p+ − γ)h,
χ(x+ h)− χ(x) ≥ (p+ − γ)h (6.4)

and for x ≤ −r − Vmax/α and h ≥ 0,

w(x− h)− w(x) ≥ (−p− − γ)h,
χ(x− h)− χ(x) ≥ (−p− − γ)h. (6.5)

(iii) (Rescaling) For ε > 0, we set

wε(x) = εw
(x
ε

)
and χε(x) = εχ

(x
ε

)
,

then (up to a sub-sequence εn → 0) we have that wε and χε converge locally uniformly towards a
function W which satisfies{

|W (x)−W (y)| ≤ C|x− y| for all x, y ∈ R,
H(Wx) = A for all x 6= 0. (6.6)

In particular, we have (with W (0) = 0),

W (x) = p+x1{x>0} + p−x1{x<0}. (6.7)

The proof of this theorem is postponed until Section 8.

7 Proof of convergence
This section is devoted to the proof of Theorem 3.2 which relies on the existence of correctors
provided by Proposition 5.1 and Theorem 6.1. We will use the following lemmas, the first one
being a direct consequence of Theorem 4.9.
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Lemma 7.1. (Barriers uniform in ε). Assume (A0) and (A). There exist a constant K1 > 0
such that for all t ≥ 0 and x ∈ R, we have

|uε(t, x)− u0(x)| ≤ K1t and |ξε(t, x)− ξ0(x)| ≤ K1t (7.1)

The following lemma is a direct consequence of Theorem 4.10.

Lemma 7.2. (Uniform gradient bound). Assume (A0) and (A). Then the solution (uε, ξε) of
(3.3) satisfies for all t ≥ 0, for all x, y ∈ R, x ≥ y,

−k0(x− y)− ε ≤ uε(t, x)− uε(t, y) ≤ 0,
−k0(x− y)− ε ≤ ξε(t, x)− ξε(t, y) ≤ 0.

(7.2)

Before passing to the proof of Theorem 3.2, let us mention that Theorem 3.4 is a direct
consequence of this result joint to Theorem 3.2.

We now turn to the proof of Theorem 3.2.

Proof of Theorem 3.2. We introduce

u(t, x) = lim sup
ε→0

∗uε ξ(t, x) = lim sup
ε→0

∗ξε,

u(t, x) = lim inf
ε→0 ∗

uε ξ(t, x) = lim inf
ε→0 ∗

ξε,

and

v = max
(
u, ξ
)

v = min
(
u, ξ
)
.

We want to prove that v is a sub-solution of (2.7) and that v is a super-solution of (2.7). Indeed,
in this case, the comparison principle will imply that v ≤ v. But by construction v ≤ v, hence
v = v = u0, the unique solution of (2.7). This implies that u = u = ξ = ξ = u0 and so uε and ξε
converge locally uniformly to u0.

To prove that v is a sub-solution of (2.7), we argue by contradiction and assume that there is
a point (t̄, x̄) ∈ (0,+∞)× R and a test function ϕ ∈ C1(J∞) such that

v(t̄, x̄) = ϕ(t̄, x̄),
v ≤ ϕ on Qr̄,r̄(t̄, x̄) with r̄ > 0,
v ≤ ϕ− 2η outside Qr̄,r̄(t̄, x̄) with η > 0,
ϕt(t̄, x̄) +H

(
x̄, ϕx(t̄, x̄)

)
= θ > 0,

(7.3)

where

H
(
x̄, ϕx(t̄, x̄)

)
=
{
H
(
ϕx(t̄, x̄)

)
if x̄ 6= 0

FA
(
ϕx(t̄, 0−), ϕx(t̄, 0+)

)
if x̄ = 0.

We can assume that for ε small enough (up to changing ϕ at infinity), we have

uε, ξε ≤ ϕ− η outside Qr̄,r̄(t̄, x̄). (7.4)

Using Lemmas 7.1 and 7.2 we get that the functions u and ξ satisfy for all t > 0,

|u(t, x)− u0(x)| ≤ K1t and |ξ(t, x)− ξ0(x)| ≤ K1t for all x ∈ R, (7.5)

and

−k0(x− y) ≤ u(t, x)− u(t, y) ≤ 0 and − k0(x− y) ≤ ξ(t, x)− ξ(t, y) ≤ 0 for x ≥ y. (7.6)

We distinguish two cases.
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Case 1: x̄ 6= 0. We only consider the case x̄ > 0, since the other case (x̄ < 0) is treated in the
same way. We define p = ϕx(t̄, x̄), that according to (7.6), satisfies

−k0 ≤ p ≤ 0 (7.7)

We choose r̄ small enough so that x̄− 2r̄ > 0. We introduce

ψε(t, x) = ϕ(t, x)− ε p
α
V

(
−1
p

)
.

We have the following lemma.

Lemma 7.3. (ϕ,ψε) satisfies, in the viscosity sense, the inequality
ϕt + M̃ε

(
ϕ

ε
(t, x),

[
ψε

ε
(t, ·)

])
(x) · |ϕx| ≥

θ

2
ψεt + L̃ε

(
x

ε
,
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x) · |ψεx| ≥
θ

2

on Qr̄,r̄(t̄, x̄). (7.8)

Proof of Lemma 7.3. For all (t, x) ∈ Qr̄,r̄(t̄, x̄), we have for r̄ small enough

ϕt(t, x) + M̃ε

(
ϕ

ε
(t, x),

[
ψε

ε
(t, ·)

])
(x) · |ϕx(t, x)| =ϕt(t̄, x̄) + or̄(1)

+ M̃ε

(
ϕ

ε
(t, x),

[
ψε

ε
(t, ·)

])
(x) · |p|

=θ + or̄(1)

+ M̃ε

(
ϕ

ε
(t, x),

[
ψε

ε
(t, ·)

])
(x) · |p| −H(p)

=:∆

where we have used for the first equality the regularity of the test function ϕ and the fact that
the non-local operator M̃ε is bounded (see Remark 3.5) and (7.3) for the second equality.

If p = 0, we obtain directly our result. We then assume that p ∈ [−k0, 0). For all D ≥ z ≥ 0,
and for ε and r̄ small enough we have that

ψε(t, x+ ε.z)− ϕ(t, x)
ε

≤ pz − p

α
V

(
−1
p

)
+ or̄(1) + oε(1),

where we have used the fact that ϕ ∈ C1. Now using the fact that Ẽ is non increasing, we have

Ẽ

(
ψε(t, x+ ε.z)− ϕ(t, x)

ε

)
≥ Ẽ

(
pz − p

α
V

(
−1
p

)
+ or̄(1) + oε(1)

)
. (7.9)

Moreover, we have that

pz − p

α
V

(
−1
p

)
+ or̄(1) + oε(1) ≥ 0 iff z ≤ 1

α
V

(
−1
p

)
+ or̄(1) + oε(1).

We deduce that

M̃ε

(
ϕ

ε
(t, x),

[
ψε

ε
(t, ·)

])
(x) ≥

∫ D

0
Ẽ

(
pz − p

α
V

(
−1
p

)
+ or̄(1) + oε(1)

)
dz

≥− V
(
−1
p

)
+ or̄(1) + oε(1).

(7.10)
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Using (7.9),(7.10) and the definition of H, we have for r̄ and ε small enough,

∆ ≥ θ + or̄(1)− V
(
−1
p

)
|p|+ or̄(1) + oε(1) + V

(
−1
p

)
|p| = θ + or̄(1) + oε(1) ≥ θ

2 .

We now prove the second inequality in (7.8). Let us notice that for ε small enough, using the
fact that the non-local operator K̃ε is bounded (see Remark 3.5) and the definition of φ, we have
that

φ

(
x

ε
− K̃ε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x)
)

= 1 for all (t, x) ∈ Qr̄,r̄(t̄, x̄).

For all (t, x) ∈ Qr̄,r̄(t̄, x̄), we have for r̄ small enough

ψεt (t, x) + L̃ε
(
x

ε
,
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x)|ψεx(t, x)| =ϕt(t, x)

+ L̃ε
(
x

ε
,
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x)|ϕx(t, x)|

=θ + or̄(1)

+ L̃ε
(
x

ε
,
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x)|p| −H(p)

=:∆′

If p = 0, we obtain directly our result. We then assume that p ∈ [−k0, 0). For all D ≥ z ≥ 0, and
for ε and r̄ small enough we have that

ϕ(t, x− εz)− ψε(t, x)
ε

≤ −pz + p

α
V

(
−1
p

)
+ or̄(1) + oε(1).

Now, using the fact that F̃ is non increasing, we have that∫ D

0
F̃

(
−pz + p

α
V

(
−1
p

)
+ or̄(1) + oε(1)

)
dz ≤ K̃ε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x)

which yields that

1
α
V

(
−1
p

)
+ or̄(1) + oε(1) ≤ K̃ε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x). (7.11)

We now compute Ñε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x). As above, and using the fact that Ĩ is non decreas-

ing, we have

Ñε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x) ≤
∫ D

0
Ĩ

(
pz + p

α
V

(
−1
p

)
+ or̄(1) + oε(1)

)
dz. (7.12)

We notice that thanks to assumption (A7), for all p ∈ [−k0, 0) we have 1
p

+ 1
α
V

(
−1
p

)
< 0.

Using that pz+ p

α
V

(
−1
p

)
+or̄(1)+oε(1) > −1 if and only if z < −1

p
− 1
α
V

(
−1
p

)
+or̄(1)+oε(1),

we have distinguish two cases.
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First case: −1
p
− 1
α
V

(
−1
p

)
+ or̄(1) + oε(1) ≤ D. In this case,

Ñε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x) ≤
∫ D

0
Ĩ

(
pz + p

α
V

(
−1
p

)
+ or̄(1) + oε(1)

)
dz

≤− 1
p
− 1
α
V

(
−1
p

)
+ or̄(1) + oε(1).

(7.13)

Then,

∆′ ≥θ + or̄(1) + L̃ε
(
x

ε
,
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x)|p| −H(p)

≥θ + or̄(1) + αK̃ε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x)

− 2V
(
Ñε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x) + K̃ε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x)
)

+ V

(
−1
p

)
|p|

≥θ + or̄(1) + V

(
−1
p

)
+ or̄(1) + oε(1)

− 2V
(
Ñε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x) + 1
α
V

(
−1
p

)
+ or̄(1) + oε(1)

)
+ V

(
−1
p

)
|p|

≥θ + or̄(1) + V

(
−1
p

)
|p|+ or̄(1) + oε(1)− 2V

(
−1
p

+ or̄(1) + oε(1)
)
|p|+ V

(
−1
p

)
|p|

≥θ + or̄(1) + oε(1) ≥ θ

2 ,

where we have used the definition of L̃ε for the second inequality, (7.11) combined with assumption
(A7) (see Remark 2.2) for the third inequality, (7.13) combined with the fact that V is non-
decreasing for the fourth inequality and the fact V is a Lipschitz continuous function for the last
inequality.

Second case: −1
p
− 1
α
V

(
−1
p

)
+ or̄(1) + oε(1) > D. In particular, by definition of D, we

have −1/p ≥ hmax for ε and r̄ small enough. Then using (7.11) and the definition of Ñε, we
obtain

Ñε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x) ≤ D and Vmax
α

+ or̄(1) + oε(1) ≤ K̃ε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x).

Using assumption (A7) (see Remark 2.2) and the previous inequalities, we get, using the definition
of L̃ε, that

L̃ε
(
x

ε
,
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x) =αK̃ε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x)

−2V
(
Ñε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x) + K̃ε

(
ψε

ε
(t, x),

[ϕ
ε

(t, ·)
])

(x)
)

≥Vmax + or̄(1) + oε(1)− 2V
(
D + Vmax

α
+ or̄(1) + oε(1)

)
≥− Vmax + or̄(1) + oε(1).
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Therefore, we have

∆′ ≥θ + or̄(1)− Vmax|p|+ or̄(1) + oε(1) + V

(
−1
p

)
|p|

≥θ + or̄(1) + oε(1)

≥θ2 ,

where we have used assumption (A4) (V (h) = Vmax ∀h ≥ hmax) and that −1/p ≥ hmax. This
ends the proof of Lemma 7.3.

Getting a contradiction. Using (7.4), we have for ε small enough,

uε ≤ ϕ− η and ξε ≤ ψε − η outside Qr̄,r̄(t̄, x̄).

Using the comparison principle on bounded subsets for (3.3), we get

uε ≤ ϕ− η and ξε ≤ ψε − η on Qr̄,r̄(t̄, x̄).

Passing to the limit as ε → 0, we get u ≤ ϕ− η and ξ ≤ ϕ− η on Qr̄,r̄(t̄, x̄) and this contradicts
the fact that v(t̄, x̄) = max

(
u(t̄, x̄), ξ(t̄, x̄))

)
= ϕ(t̄, x̄).

Case 2: x̄ = 0. Using Theorem 4.5, we may assume that the test function has the following
form

ϕ(t, x) = g(t) + p−x1{x<0} + p+x1{x>0} on Qr̄,2r̄(t̄, 0), (7.14)

where g is a C1 function defined on (0,+∞). The last line in condition (7.3) then becomes

g′(t̄) + FA(p−, p+) = g′(t̄) +A = θ.

Let us consider (w, ζ) the solution of (6.1) provided by Theorem 6.1. We define

ϕε(t, x) =
{
g(t) + wε(x) on Qr̄,2r̄(t̄, 0)
ϕ(t, x) outside Qr̄,2r̄(t̄, 0),

(7.15)

ψε(t, x) =
{
g(t) + ζε(x) on Qr̄,2r̄(t̄, 0)
ϕ(t, x) outside Qr̄,2r̄(t̄, 0).

(7.16)

We have the following lemma,

Lemma 7.4. (ϕε, ψε) satisfies in the viscosity sence, for r̄ and ε small enough on Qr̄,r̄(t̄, 0) ,
ϕεt + M̃ε

(
ϕε

ε
(t, x),

[
ψε

ε
(t, ·)

])
(x) · |ϕεx| ≥

θ

2
ψεt + L̃ε

(
x

ε
,
ψε

ε
(t, x),

[
ϕε

ε
(t, ·)

])
(x) · |ψεx| ≥

θ

2 .
(7.17)

Proof of Lemma 7.4. Let h be a test function touching ϕε from below at (t1, x1) ∈ Qr̄,r̄(t̄, 0), so
we have

w
(x1

ε

)
= 1
ε

(h(t1, x1)− g(t1))
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and

w(y) ≥ 1
ε

(h(t1, εy)− g(t1)) ,

for y in a neighbourhood of x1

ε
. Since w does not depend on time, we have that

ht(t1, x1) = g′(t1).

Using that (w, ζ) is a solution of (6.1), we then deduce that

ht(t1, x1)− g′(t1) + M̃
(
w
(x1

ε

)
, [ζ]
)(x1

ε

)
· |hx(t1, x1)| ≥ A,

which implies

ht(t1, x1) + M̃
(
w
(x1

ε

)
, [ζ]
)(x1

ε

)
· |hx(t1, x1)| ≥ A+ g′(t1) ≥ θ

2 ,

i.e.

ht(t1, x1) + M̃ε

(
ϕε

ε
(t1, x1),

[
ψε

ε
(t1, ·)

])
(x1) · |hx(t1, x1)| ≥ θ

2 . (7.18)

Let f be a test function touching ψε from below at (t2, x2) ∈ Qr̄,r̄(t̄, 0). We have

ζ
(x2

ε

)
= 1
ε

(f(t2, x2)− g(t2))

and

ζ(y) ≥ 1
ε

(f(t2, εy)− g(t2))

for y in a neighbourhood of x2

ε
. Since ζ does not depend on time, we have that

ft(t2, x2) = g′(t2).

Therefore, using that (w, ζ) is a solution of (6.1), we get

ft(t2, x2)− g′(t2) + L̃
(x2

ε
, ζ
(x2

ε

)
, [w]

)(x2

ε

)
· |fx(t2, x2)| ≥ A,

which implies

ft(t2, x2) + L̃
(x2

ε
, ζ
(x2

ε

)
, [w]

)(x2

ε

)
· |fx(t2, x2)| ≥ A+ gt(t2) ≥ θ

2 ,

i.e.

ft(t2, x2) + L̃ε
(
x2

ε
,
ψε

ε
(t2, x2),

[
ϕε

ε
(t2, ·)

])
(x2) · |fx(t2, x2)| ≥ θ

2 .

Getting the contradiction. We have that for ε small enough

uε + η ≤ ϕ = g(t) + p−x1{x<0} + p+x1{x>0} on Qr̄,2r̄(t̄, 0)\Qr̄,r̄(t̄, 0)
ξε + η ≤ ϕ = g(t) + p−x1{x<0} + p+x1{x>0} on Qr̄,2r̄(t̄, 0)\Qr̄,r̄(t̄, 0).
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Using the fact that wε, ζε → W with W (x) = p̄−x1{x<0} + p̄+x1{x>0} (see Theorem 6.1), we
deduce that for ε small enough, we have

uε + η

2 ≤ ϕ
ε and ξε + η

2 ≤ ϕ
ε on Qr̄,2r̄(t̄, 0)\Qr̄,r̄(t̄, 0).

Combining this with (7.15) and (7.16), we get that

uε + η

2 ≤ ϕ
ε and ξε + η

2 ≤ ϕ
ε outside Qr̄,r̄(t̄, 0).

By the comparison principle on bounded subsets the previous inequality holds inQr̄,r̄(t̄, 0). Passing
to the limit as ε→ 0 and evaluating the inequality in (t̄, 0), we obtain

u(t̄, 0) + η

2 ≤ ϕ(t̄, 0) and ξ(t̄, 0) + η

2 ≤ ϕ(t̄, 0)

which is a contradiction with the fact that v(t̄, 0) = max
(
u(t̄, 0), ξ(t̄, 0)

)
= ϕ(t̄, 0).

8 Proof of the existence of correctors at the junction
This section contains the proof of Theorem 6.1. We proceed as in [13, 14] and we will construct
correctors on a truncated domain and then pass to the limit as the size of the domain goes to
infinity.

For l ∈ (r,+∞), r << l and r ≤ R << l we want to find λl,R ∈ R such that there exists a
solution (wl,R, χl,R) of

{
G1
R(x,wl,R(x), [χl,R], wl,Rx ) = λl,R

G2
R(x, χl,R(x), [wl,R], χl,Rx ) = λl,R

if x ∈ (−l, l){
H

+(wl,Rx ) = λl,R

H
+(χl,Rx ) = λl,R

if x = l{
H
−(wl,Rx ) = λl,R

H
−(χl,Rx ) = λl,R

if x = −l

(8.1)

with

G1
R(x,w(x), [χ], q) = ψR(x)M(w(x), [χ])(x)|q|+ (1− ψR(x))H(q), (8.2)

G2
R(x, χ(x), [w], q) = ψR(x)L (x, χ(x), [w]) (x)|q|+ (1− ψR(x))H(q). (8.3)

Moreover, ψR ∈ C∞, ψR : R→ [0, 1], with

ψR ≡
{

1 on [−R,R]
0 on (−∞,−R− 1] ∪ [R+ 1,+∞), and ψR(x) < 1 ∀x /∈ [−R,R]. (8.4)

As in the previous sections, to G1,2
R we associate G̃1,2

R which is defined in the same way but we
replace the non-local operators M and L respectively by M̃ and L̃.

8.1 Comparison principle for a truncated problem
Proposition 8.1 (Comparison principle on a truncated domain). Let us consider the following
problem for r < l1 < l2 and λ ∈ R, with l2 >> R.

{
G̃1
R(x, u(x), [ξ], ux) ≥ λ

G̃2
R(x, ξ(x), [u], ξx) ≥ λ if x ∈ (l1, l2){

H
+(ux) ≥ λ

H
+(ξx) ≥ λ

if x = l2

(8.5)
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and for ε0 > 0, 
{
G1
R(x, v(x), [ζ], vx) ≤ λ− ε0

G2
R(x, ζ(x), [v], ζx) ≤ λ− ε0

if x ∈ (l1, l2){
H

+(vx) ≤ λ− ε0

H
+(ζx) ≤ λ− ε0

if x = l2

(8.6)

Then if v(l1) ≤ u(l1) and ζ(l1) ≤ ξ(l1), we have v ≤ u and ζ ≤ ξ in [l1, l2].

Proof. Like in [13], the only new difficulty to prove this proposition is the comparison at l2. But
since near l2, the system decouples itself, we can prooceed as in [14, Proposition 4.1].

Remark 8.2. We have a similar result if we exchange the boundary conditions, that is to say for
l1 < l2 < −r and l2 < −R, and if the Dirichlet condition is placed in x = l2 and the following
conditions are imposed at x = l1,

{
H
−(ux) ≥ λ

H
−(ξx) ≥ λ

if x = l1{
H
−(vx) ≤ λ− ε0

H
−(ζx) ≤ λ− ε0

if x = l1.

8.2 Existence of correctors on a truncated domain
Proposition 8.3 (Existence of correctors on a truncated domain). There exists a constant
λl,R ∈ R such that there exists a solution (wl,R, χl,R) of (8.1) for which there exists a constant C
(depending only on k0) and a Lipschitz continuous function ml,R, such that

H0 ≤ λl,R ≤ 0,
|wl,R(x)−ml,R(x)| ≤ C for all x ∈ [−l, l],
|χl,R(x)−ml,R(x)| ≤ C for all x ∈ [−l, l],
|ml,R(x)−ml,R(y)| ≤ C|x− y| for all x, y ∈ [−l, l],
|wl,R(x)− χl,R(x)| ≤ C for all x ∈ [−l, l],

(8.7)

with H0 defined in (2.6).

Proof. Classically, we consider the approximated truncated cell problem,

{
δvδ +G1

R(x, vδ(x), [ζδ], vδx) = 0
δζδ +G2

R(x, ζδ(x), [vδ], ζδx) = 0 if x ∈ (−l, l){
δvδ +H

+(vδx) = 0
δζδ +H

+(ζδx) = 0
if x = l{

δvδ +H
−(vδx) = 0

δζδ +H
−(ζδx) = 0

if x = −l.

(8.8)

Step 1: construction of barriers. Using that (0, 0) and (C0/δ, C0/δ) are respectively obvious
sub and super-solution of (8.8), with C0 = |min

p∈R
H0(p)| = −H0 and that we have a comparison

principle, we deduce that there exists a continuous viscosity solution (vδ, ζδ) of (8.8) which satisfies

0 ≤ vδ ≤ C0

δ
and 0 ≤ ζδ ≤ C0

δ
. (8.9)
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Step 2: control of the oscillations of vδ and ζδ.

Lemma 8.4. The functions vδ and ζδ satisfy for all x, y ∈ [−l, l], x ≥ y,

−k0(x− y)− 1 ≤ vδ(x)− vδ(y) ≤ 0 and − k0(x− y)− 1 ≤ ζδ(x)− ζδ(y) ≤ 0. (8.10)

Proof of Lemma 8.4. In the rest of the proof we will use the following notation

Ω =
{

(x, y) ∈ [−l, l]2 s.t. x ≥ y
}
.

Proof of the upper inequality. We want to prove that

M = sup
(x,y)∈Ω

max
(
vδ(x)− vδ(y), ζδ(x)− ζδ(y)

)
≤ 0. (8.11)

We argue by contradiction and assume that M > 0. Since vδ and ζδ are continuous and x, y
belong to a compact, M is reached for a finite point that we denote by (x̄, ȳ) ∈ Ω. Given that
M > 0, we deduce that x̄ 6= ȳ. Therefore, we can use the viscosity inequalities for (8.8).

Let us for instance assume that M = vδ(x̄)− vδ(ȳ), the other case is similar so we skip it. We
distinguish 3 cases:

-If (x̄, ȳ) ∈ (−l, l), we have

δvδ(x̄) +G1
R(x̄, vδ(x̄), [ζδ], 0) ≤ 0

δvδ(ȳ) + G̃1
R(ȳ, vδ(ȳ), [ζδ], 0) ≥ 0.

Combining these inequalities with the fact that GiR(x, U, [Ξ], 0) = 0 for i = 1, 2, we obtain

δM ≤ 0.

-If x̄ = l and ȳ ∈ [−l, l), we obtain similarly

δM ≤ 0, (8.12)

using the fact that H+(0) = 0.
-If x̄ ∈ (−l, l] and ȳ = −l, we obtain

δM ≤ H0 < 0,

where we have used the fact that H−(0) = H0 < 0.
For every value of x̄, ȳ we obtain a contradiction, therefore M ≤ 0.

Proof of the lower inequalities. In order to proof these inequalities, we will use the
following lemma which proof is postponed.

Lemma 8.5. For all x ∈ [−l, l], we have

0 ≤ ζδ(x)− vδ(x) ≤ 1. (8.13)

In order to prove (8.10), using Lemma 8.5 it is sufficient to prove that

M = sup
(x,y)∈Ω

(
ζδ(y)− vδ(x)− k0(x− y)− 1

)
≤ 0. (8.14)

We argue by contradiction and assume that M > 0. Since Ω is compact and vδ and ζδ are
continuous, M is reached for a finite point that we denote by (x̄, ȳ) ∈ Ω. Since M > 0, we deduce
that x̄ > ȳ (thanks to Lemma 8.5). Therefore, we can use the viscosity inequalities for (8.8). We
distinguish 4 cases:
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-If x̄, ȳ ∈ (−l, l), we obtain

δζδ(ȳ) +G2
R(ȳ, ζδ(ȳ), [vδ],−k0) ≤ 0

δvδ(x̄) + G̃1
R(x̄, vδ(x̄), [ζδ],−k0) ≥ 0,

combining these inequalities and using the definition of M , we obtain

δM ≤ δζδ(ȳ)− δvδ(x̄) ≤ G̃1
R(x̄, vδ(x̄), [ζδ],−k0)
−G2

R(ȳ, ζδ(ȳ), [vδ],−k0). (8.15)

Since the non-local operator M̃ is negative and that H(−k0) = 0 we deduce that

G̃1
R(x̄, vδ(x̄), [ζδ],−k0) ≤ 0.

We now claim that G2
R(ȳ, ζδ(ȳ), [vδ],−k0) ≥ 0. Using H(−k0) = 0 and (3.15), we get that

G2
R(ȳ, ζδ(ȳ), [vδ],−k0) = L

(
ȳ, ζδ(ȳ),

[
vδ(·)

])
(ȳ) · k0ψR(ȳ)

≥ −2k0V
(
N
(
ζδ(ȳ),

[
vδ(·)

])
(ȳ)
)
.

(8.16)

Let us now prove that N(ζδ(ȳ), [vδ(·)])(ȳ) ≤ h0. In fact, it is sufficient to prove that for all
z ∈ (h0, D], we have

vδ(ȳ + z)− ζδ(ȳ) < −1. (8.17)

First, if z ≥ x̄− ȳ, using the fact that vδ is non increasing and that M > 0, we obtain

vδ(ȳ + z)− ζδ(ȳ) ≤ vδ(x̄)− ζδ(ȳ) ≤ −k0(x̄− ȳ)− 1 < −1.

Second, in the case z < x̄− ȳ, using the fact that

ζδ(ȳ + z)− vδ(x̄)− k0(x̄− ȳ − z)− 1 ≤ ζδ(ȳ)− vδ(x̄)− k0(x̄− ȳ)− 1,

and using Lemma 8.5 we deduce that

vδ(ȳ + z)− ζδ(ȳ) ≤ −k0z < −1. (8.18)

This implies that N(ζδ(ȳ), [vδ(·)])(ȳ) ≤ h0. Using assumption (A3) (V (h = 0) if h ≤ h0) and
injecting this result in (8.16) we get that G2

R(ȳ, ζδ(ȳ), [vδ],−k0) ≥ 0. Using (8.15) we then get a
contradiction.

-If x̄ ∈ (−l, l) and ȳ = −l, we obtain

δζδ(ȳ) +H
−(−k0) ≤ 0

δvδ(x̄) + G̃1
R(x̄, vδ(x̄), [ζδ],−k0) ≥ 0.

Using the fact that H−(−k0) = 0 and that G̃1
R(x̄, vδ(x̄), [ζδ],−k0) ≤ 0 we obtain δM ≤ 0.

-If x̄ = l and ȳ ∈ (−l, l), we obtain

δζδ(ȳ) +G2
R(ȳ, ζδ(ȳ), [vδ],−k0) ≤ 0

δvδ(x̄) +H
+(−k0) ≥ 0,

using that G2
R(ȳ, ζδ(ȳ), [vδ],−k0) ≥ 0 (see the first case) , and the fact that H+(−k0) < 0, we

directly obtain δM ≤ 0.
-If x̄ = l and ȳ = −l, we obtain

δζδ(ȳ) +H
−(−k0) ≤ 0

δvδ(x̄) +H
+(−k0) ≥ 0,

and so, we get δM ≤ 0.
For every value of x̄, ȳ ∈ [−l, l] we get a contradiction, therefore we have M ≤ 0. This ends

the proof of Lemma 8.4.
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Step 3: construction of a Lipschitz estimate. We want to construct a Lipschitz continuous
function mδ, such that there exists a constant C > 0 (independent of l and R) such that |v

δ(x)−mδ(x)| ≤ C for all x ∈ [−l, l],
|ζδ(x)−mδ(x)| ≤ C for all x ∈ [−l, l],
|mδ(x)−mδ(y)| ≤ C|x− y| for all x, y ∈ [−l, l].

(8.19)

We define mδ as an affine function in each interval of the form [ih0, (i+ 1)h0], with i ∈ Z, such
that

mδ(ih0) = vδ(ih0) and mδ((i+ 1)h0) = vδ((i+ 1)h0).

Since mδ and vδ are non-increasing, and |vδ((i+ 1)h0)− vδ(ih0)| ≤ k0h0 + 1 = 2, we deduce that
for all x ∈ [ih0, (i+ 1)h0],

−2 ≤ vδ((i+ 1)h0)−mδ(ih0) ≤ vδ(x)−mδ(x) ≤ vδ(ih0)−mδ((i+ 1)h0) ≤ 2, (8.20)

and for all x, y ∈ [−l, l],

|mδ(x)−mδ(y)| ≤ 2k0|x− y|.

Now using Lemma 8.5, we have

|ζδ(x)−mδ(x)| ≤ 3.

Choosing C = max(2k0, 3), we obtain (8.19).

Step 4: passing to the limit as δ goes to 0. Using (8.9), Lemma 8.5 and (8.19), we deduce
that there exists a subsequence δn → 0 such that

δnv
δn(0)→ −λl,R as n→ +∞,

δnζ
δn(0)→ −λl,R as n→ +∞,

mδn −mδn(0)→ ml,R as n→ +∞.

The last convergence being locally uniform. Let us consider,

wl,R = lim sup
δn→0

∗(vδn − vδn(0)) and wl,R = lim inf
δn→0 ∗

(vδn − vδn(0))

and

χl,R = lim sup
δn→0

∗(ζδn − ζδn(0)) and χl,R = lim inf
δn→0 ∗

(ζδn − ζδn(0)).

Therefore, we have that λl,R, wl,R, wl,R, χl,R, χl,R and ml,R satisfy

H0 ≤ λl,R ≤ 0,
|wl,R −ml,R| ≤ C, |wl,R −ml,R| ≤ C,
|χl,R −ml,R| ≤ C, |χl,R −ml,R| ≤ C,

|ml,R
x | ≤ C,

(8.21)

and thanks to Lemma 8.5, we have

|χl,R − wl,R|, |χl,R − wl,R| ≤ 1. (8.22)

By stability of viscosity solutions, we have that (wl,R− 2C,χl,R− 2C) and (wl,R, χl,R) are respec-
tively a sub-solution and a super-solution of (8.1), and

wl,R − 2C ≤ wl,R and χl,R − 2C ≤ χl,R.

By Perron’s method, we can construct a solution (wl,R, χl,R) of (8.1) and thanks to (8.21) and
(8.22), ml,R, wl,R, χl,R and λl,R satisfy (8.7).

The uniqueness of λl,R is classical so we skip it. This ends the proof of Proposition 8.3.
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Proof of Lemma 8.5. We separate the proof in two parts. This proof uses the vertex test function
of the work of Imbert and Monneau [19, Theorem 3.2] to treat the comparison between vδ and
ζδ near −l and l. In fact, we consider that we have a network composed of a single branch with
two nodes (one in −l and the other in l). Near −l we consider an outgoing branch and near l we
consider an incoming branch.

Step 1: proof of vδ(x)− ζδ(x) ≤ 0 for all x ∈ [−l, l]. We want to prove that

M = sup
x∈[−l,l]

(
vδ(x)− ζδ(x)

)
≤ 0.

We argue by contradiction and assume that M > 0. Given that vδ and ζδ are continuous, M is
reached at a finite point that we denote by x̄ ∈ [−l, l]. We distinguish 3 cases according to the
position of x̄ in the interval [−l, l].

Case 1: x̄ ∈ (−l, l). We define for ε a small parameter,

ϕ(x, y) = vδ(x)− ζδ(y)− (x− y)2

2ε − 1
2
(
(x− x̄)2 + (y − x̄)2) .

Since [−l, l] is compact and vδ and ζδ are continuous functions, the function ϕ reaches a maximum
at a finite point that we denote by (xε, yε) ∈ [−l, l]. If we denote Mε = ϕ(xε, yε), by classical
arguments, we have that

lim
ε→0

Mε = M, lim
ε→0
|xε − yε| = 0, and (xε, yε)→ (x̄, x̄) as ε goes to 0. (8.23)

We can also prove that

(xε − yε)2

ε
→ 0 as ε→ 0. (8.24)

Furthermore, for ε small enough we have xε, yε ∈ (−l, l), and using the viscosity inequalities
we obtain

δvδ(xε) +G1
R(xε, vδ(xε), [ζδ], pε + (xε − x̄)) ≤ 0

δζδ(yε) + G̃2
R(yε, ζδ(yε), [vδ], pε − (yε − x̄)) ≥ 0,

with pε = (xε− yε)/ε. Combining these inequalities and using the definition of M , we obtain that

δM ≤ G̃2
R

(
yε, ζ

δ(yε), [vδ], pε − (yε − x̄)
)
−G1

R

(
xε, v

δ(xε), [ζδ], pε + (xε − x̄)
)

≤ (ψR(xε)− ψR(yε))H(pε) + ||ψR||∞||H
′||∞ (|yε − x̄|+ |xε − x̄|)

+ψR(yε)αK̃(ζδ(yε), [vδ(·)])(yε).|pε − yε + x̄|
−ψR(xε)M(vδ(xε), [ζδ(·)])(xε).|pε + xε − x̄|

≤ (ψR(xε)− ψR(yε))H(pε) + ||ψR||∞||H
′||∞ (|yε − x̄|+ |xε − x̄|)

+ψR(yε)αK̃(ζδ(yε), [vδ(·)])(yε).|pε| − ψR(xε)M(vδ(xε), [ζδ(·)])(xε).|pε|
+(αM0|yε − x̄|+M0|xε − x̄|)

≤ (ψR(xε)− ψR(yε))H(pε) + oε(1)
+ψR(yε)αK̃(ζδ(yε), [vδ(·)])(yε).|pε| − ψR(xε)M(vδ(xε), [ζδ(·)])(xε).|pε|

(8.25)

where we have replaced G1
R and G̃2

R by their definitions, used the fact that by definition H is a
Lipschitz function and that that V ≥ 0 for the second inequality, used Remark 3.5 for the third
inequality and (8.23) for the last inequality.

We will compute the right part of the inequality in different steps.
1-Concerning the local operator.∣∣∣(ψR(xε)− ψR(yε))H(pε)

∣∣∣ ≤ ||DψR||∞|xε − yε||H(pε)|

≤ ||DψR||∞Vmax
(xε − yε)2

ε
= oε(1)

(8.26)
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where we have used the regularity of ψR for the first inequality, used the fact that by definition of
H, we have |H| ≤ Vmax|p| for the second inequality and used (8.24) for the last inequality.

2-Concerning the non-local operator M . We claim that
M(vδ(xε), [ζδ(·)])(xε) ≤ |xε − yε|. To prove this, it suffices to prove that for all z > |xε − yε|

ζδ(xε + z)− vδ(xε) < 0.

Using the fact that ζδ is decreasing, that xε + z ≥ yε and that Mε > 0, we obtain

ζδ(xε + z)− vδ(xε) ≤ ζδ(yε)− vδ(xε) < 0.

Therefore we have

−ψR(xε)M(vδ(xε), [ζδ])(xε) = −ψR(xε)
∫ |xε−yε|

0
E(ζδ(xε + z)− vδ(xε))dz ≤ α|xε − yε|. (8.27)

In particular, this implies that∣∣∣ψR(xε)M(vδ(xε), [ζδ])(xε)
∣∣∣|pε| ≤ α (xε − yε)2

ε
= oε(1). (8.28)

3-Concerning the non-local operator K̃. We claim that
|K̃(ζδ(yε), [vδ(·)])(yε)| ≤ |xε − yε|. As before, it suffices to prove that for all z > |xε − yε|

vδ(yε − z)− ζδ(yε) > 0.

Using the fact that vδ is decreasing, that xε ≥ yε − z and that Mε > 0, we obtain

vδ(yε − z)− ζδ(yε) ≥ vδ(xε)− ζδ(yε) > 0.

Therefore we have ∣∣∣ψR(yε)K̃(ζδ(yε), [vδ])(yε)
∣∣∣ ≤ |xε − yε|. (8.29)

Injecting (8.26), (8.27), and (8.29) into (8.25), we obtain δM ≤ oε(1) and we get a contradiction
for ε small enough.

Case 2: x̄ = l. In this case, we use the vertex test function introduced by Imbert and
Monneau. We refer to [19] for a detailed description of the vertex test function, but for the
readers convenience we recall the properties that we used to complete this proof. The vertex test
function Gγ is associated to the single Hamiltonian H. We fix γ = δM/2. It satisfies the following
properties.

1. (Regularity)

Gγ ∈ C([−l, l]2)
{
Gγ(x, ·) ∈ C1([−l, l]) for all x ∈ [−l, l]
Gγ(·, y) ∈ C1([−l, l]) for all y ∈ [−l, l]. (8.30)

2. (Bound from below) Gγ ≥ 0 = G(0, 0).

3. (Super-linearity) There exists g : [0,+∞)→ R non-decreasing and such that for all (x, y) ∈
[−l, l]2

g(|x− y|) ≤ Gγ(x, y) and lim
a→+∞

g(a)
a

= +∞.
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4. (Compatibility condition on the gradient)

H(y,−Gγy(x, y))−H(x,Gγx(x, y)) ≤ γ, (8.31)

with for all x ∈ [−l, l] and p ∈ R,

H(x, p) =
{

H(p) if x ∈ [−l, l)
H

+(p) if x = l.
(8.32)

We introduce the following test function, for ε > 0 a small parameter,

ϕ(x, y) = vδ(x)− ζδ(y)− εGγ
(x
ε
,
y

ε

)
− 1

2
(
(x− x̄)2 + (y − x̄)2) .

which like before reaches a maximum at a finite point (xε, yε) ∈ [−l, l] and (8.23) remains true.
Using the viscosity equations, we have that δvδ(xε) +H

(
xε, G

γ
x

(xε
ε
,
yε
ε

)
+ (xε − x̄)

)
≤ 0

δζδ(yε) +H
(
yε,−Gγy

(xε
ε
,
yε
ε
− (yε − ȳ)

))
≥ 0.

Using the definition of M and combining the previous inequalities, we get that

δM ≤H
(
yε,−Gγy

(x
ε
,
y

ε
− (yε − ȳ)

))
−H

(
xε, G

γ
x

(x
ε
,
y

ε

)
+ (xε − x̄)

)
≤H

(
yε,−Gγy

(x
ε
,
y

ε

))
−H

(
xε, G

γ
x

(x
ε
,
y

ε

))
+ oε(1),

where we have used (8.23) combined with the fact that both H and H+ are Lipschitz continuous
for the second inequality. Using the compatibility condition on the gradient of the vertex test
function (8.31) we obtain

δM ≤ γ + oε(1),

and given that γ = δM/2, we get a contradiction for ε small enough.

Case 3: x̄ = −l. This case is exactly like the previous one with the exception that the vertex
test function must be adapted to treat the junction at −l. In particular, (8.32) is replaced by

H(x, p) =
{

H(p) if x ∈ (−l, l]
H
−(p) if x = −l.

We skip the rest of the computation for this case.

In conclusion, we have M ≤ 0 and for all x ∈ [−l, l], 0 ≤ ζδ(x)− vδ(x).

Step 2: proof of ζδ(x)− vδ(x) ≤ 1. We want to prove that

M = sup
x∈[−l,l]

(
ζδ(x)− vδ(x)− 1

)
≤ 0.

We argue by contradiction and assume that M > 0. Give that vδ and ζδ are continuous, M is
reached at a finite point that we denote by x̄ ∈ [−l, l]. We distinguish 2 cases according to the
position of x̄ in the interval [−l, l].
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Case 1: x̄ ∈ (−l, l). We define for ε a small parameter,

ϕ(x, y) = vδ(x)− ζδ(y)− 1− (x− y)2

2ε − 1
2
(
(x− x̄)2 + (y − x̄)2) .

Using the same arguments as before, the test function reaches a maximum at a finite point that
we denote by (xε, yε) ∈ [−l, l]. If we denote Mε = ϕ(xε, yε) (8.23) and (8.24) remain valid.

For ε small enough we have xε, yε ∈ (−l, l), and using the viscosity inequalities we get that

δζδ(xε) +G2
R(xε, ζδ(xε), [vδ], pε) ≤ 0

δvδ(yε) + G̃1
R(yε, vδ(yε), [ζδ], pε) ≥ 0,

with pε = (xε − yε)/ε. Combining these inequalities and using the definition of M , we obtain

δM ≤ G̃1
R(yε, vδ(yε), [ζδ], pε)−G2

R(xε, ζδ(xε), [vδ], pε)
≤ (ψR(xε)− ψR(yε))H(pε) + 2ψR(xε)V

(
N(ζδ(xε), [vδ(·)])(xε)

)
.|pε|,

(8.33)

where we have replaced G2
R and G̃1

R by their definition and used (3.15) and that M̃ ≤ 0. We will
compute the right part of (8.33) in different steps.

1-Concerning the local operator. Like before, we have∣∣∣(ψR(xε)− ψR(yε))H(pε)
∣∣∣ ≤ ||DψR||∞|xε − yε||H(pε)| = oε(1). (8.34)

2-Concerning the non-local operator N . We claim that

N(ζδ(xε), [vδ(·)])(xε) ≤ h0.

To prove this, it suffices to prove that for all z ≥ h0, we have

vδ(xε + z)− ζδ(xε) < −1.

Since |xε − yε| → 0 as ε goes to 0, we have for all z ≥ h0 and ε small enough that xε + z ≥ yε.
Therefore, we get

vδ(xε + z)− ζδ(xε) ≤ vδ(yε)− ζδ(xε) < −1,

where we have used the fact that vδ is decreasing for the first inequality and the fact that Mε > 0
for the second inequality. This implies that

V
(
N(ζδ(xε), [vδ(·)])(xε)

)
≤ V (h0) = 0. (8.35)

Injecting (8.34) and (8.35) in (8.33), we obtain δM ≤ oε(1), and we get a contradiction for ε
small enough.

Case 2: x̄ = l of x̄ = −l. Proceeding like in the previous step we obtain directly a contradic-
tion by using the properties of the vertex test function.

This ends the proof of Lemma 8.5.

Proposition 8.6 (First definition of the flux limiter). The following limits exists (up to some
sub-sequence),  A = lim

R→+∞
AR,

AR = lim
l→+∞

λR,l.

Moreover, we have

H0 ≤ A, AR ≤ 0. (8.36)
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Proof. This proposition is a direct consequence of (8.7).

Proposition 8.7 (Control of the slopes on a truncated domain). Assume that l and R are big
enough. Let (wl,R, χl,R) be the solution of (8.1) given by Proposition 8.3. We also assume up to
a sub-sequence, that A = lim

R→+∞
lim

l→+∞
λl,R > H0. Then there exists γ0 > 0 and a constant C > 0

(independent of l and R) such that for all γ ∈ (0, γ0) and for all x ≥ r +D, h ≥ 0 we have

wl,R(x+ h)− wl,R(x) ≥ (p+ − γ)h− C (8.37)

and

χl,R(x+ h)− χl,R(x) ≥ (p+ − γ)h− C. (8.38)

Similarly, for all x ≤ −r −D and h ≥ 0,

wl,R(x− h)− wl,R(x) ≥ (−p− − γ)h− C (8.39)

and

χl,R(x− h)− χl,R(x) ≥ (−p− − γ)h− C. (8.40)

Proof. We only do the proof of (8.37)-(8.38), since the proof of (8.39)-(8.40) is similar and we skip
it. For µ > 0, small enough, we denote by p+

µ the real number defined by

H(p+
µ ) = H

+(p+
µ ) = λl,R − µ. (8.41)

Using that

H0 < λl,R ≤ 0,

we deduce that p+
µ exists for µ small enough and p+

µ ∈ [−k0, 0).
Let us now consider 

w+ = p+
µ x,

χ+ = p+
µ x−

p+
µ

α
V

(
−1
p+
µ

)
,

that satisfy

H(w+
x ) = H

+(w+
x ) = H(χ+

x ) = H
+(χ+

x ) = λl,R − µ for x ∈ R. (8.42)

Let us consider (w,χ) =
(

0,−
p+
µ

α
V

(
−1
p+
µ

))
the correctors provided by Proposition 5.1 for p = p+

µ .

Given the definition of w+ and χ+, we get

M(w+(x), [χ+])(x) = Mp+
µ

(w(x), [χ])(x), K(χ+(x), [w+])(x) = Kp+
µ

(χ(x), [w])(x),

and

N(χ+(x), [w+])(x) = Np+
µ

(χ(x), [w])(x).

In particular this implies that

M(w+(x), [χ+])(x) = −V
(
−1
p+
µ

)
and

αK(χ+(x), [w+])(x)− 2V
(
K(χ+(x), [w+])(x) +N(χ+(x), [w+])(x)

)
= −V

(
−1
p+
µ

)
.
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Finally, given that the non-local operator K is bounded by D (see Remark 3.5), we have for all
x ∈ (r +D, l]

φ
(
x−K(χ+(x), [w+])(x)

)
= 1.

Combining the previous results, we can see that the restriction of (w+, χ+) to (r+D, l] satisfies
{
G1
R(x,w+(x), [χ+], w+

x ) = H(p+
µ ) = λl,R − µ

G2
R(x, χ+(x), [w+], χ+

x ) = H(p+
µ ) = λl,R − µ

if x ∈ (r +D, l){
H

+(w+
x ) = λl,R − µ

H
+(χ+

x ) = λl,R − µ
if x = l

(8.43)

Let us introduce, for some x0 ∈ (r +D, l],

{
g = wl,R − wl,R(x0)
h = χl,R − wl,R(x0), and


u = w+ − w+(x0)− C − k0

α
Vmax

v = χ+ − w+(x0)− C − k0

α
Vmax,

(8.44)

with C > 0 the constant provided by Proposition 8.3. Then we have

g(x0) = 0 ≥ −C − k0

α
Vmax = u(x0)

and

h(x0) = χl,R(x0)− wl,R(x0) ≥ −C ≥ −C − k0

α
Vmax −

p+
µ

α
V

(
−1
p

)
= v(x0),

where we have used the fact that p+
µ ∈ [−k0, 0) and ||V ||∞ ≤ Vmax. Using that (g, h) is a solution of

(8.5) and (u, v) is a solution of (8.6) (with ε0 = µ), joint to the comparison principle (Proposition
8.1), up to changing the value of the constant C, we get that{

wl,R(x)− wl,R(x0) ≥ p+
µ (x− x0)− C

χl,R(x)− χl,R(x0) ≥ p+
µ (x− x0)− C.

This implies that for all h ≥ 0, and for all x ∈ (r +D, l),{
wl,R(x+ h)− wl,R(x) ≥ p+

µ h− C
χl,R(x+ h)− χl,R(x) ≥ p+

µ h− C.

Finally, if we choose γ0 < |p0 − p+|, then we have

H(p+ − γ) = H
+(p+ − γ).

Choosing µ > 0 such that

p+
µ = p+ − γ.

we obtain (8.37)-(8.38).

Proof of Theorem 6.1. The proof is performed in two steps.
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Step 1: proof of i) and ii) We want to pass to the limit as l→ +∞ and then as R→ +∞ on
the solution of (8.1) given by Proposition 8.3. Using (8.3), there exists ln → +∞, such that

mln,R −mln,R(0)→ mR as n→ +∞,

the convergence being locally uniform. We also define

wR(x) = lim sup
n→+∞

∗ (wln,R − wln,R(0)
)
, wR(x) = lim inf

n→+∞∗

(
wln,R − wln,R(0)

)
,

and

χR(x) = lim sup
n→+∞

∗ (χln,R − χln,R(0)
)
, χR(x) = lim inf

n→+∞∗

(
χln,R − χln,R(0)

)
Thanks to (8.3), we know that these limits are finite and satisfy

mR − C ≤ wR ≤ wR ≤ mR + C. and mR − C ≤ χR ≤ χR ≤ mR + C.

By stability of viscosity solutions (wR−2C,χR−2C) and (wR, χR) are respectively a sub-solution
and a super-solution of {

G1
R(x,wR(x), [χR], wRx ) = AR

G2
R(x, χR(x), [wR], χRx ) = AR.

(8.45)

Therefore, using Perron’s method, we can construct a solution (wR, χR) of (8.45), with mR, AR,
wR and χR satisfying

|mR(x)−mR(y)| ≤ C|x− y| for all x, y ∈ R,
|wR(x)−mR(x)| ≤ C, |χR(x)−mR(x)| ≤ C for all x ∈ R,
|wR(x)− χR(x)| ≤ C for all x ∈ R, H0 ≤ AR ≤ 0.

(8.46)

Using Proposition 8.7, if A > H0, we know that there exists a γ0 > 0 and a constant C > 0 such
that for all γ ∈ (0, γ0), for all x ≥ r +D, and h ≥ 0,

wR(x+ h)− wR(x) ≥ (p+ − γ)h− C and χR(x+ h)− χR(x) ≥ (p+ − γ)h− C.

Similarly, for all x ≤ −r −D and h ≥ 0,

wR(x− h)− wR(x) ≥ (−p− − γ)h− C and χR(x− h)− χR(x) ≥ (−p− − γ)h− C.

Proceeding like before, we pass to the limit as R→ +∞ in order to build a solution (w,χ) of
(6.1) with λ = A that satisfies (6.3), (6.4) and (6.5).

Step 2: proof of iii). Let us now consider the rescaled functions wε = εw(x/ε) and χε(x) =
εχ(x/ε). Using (6.3), we have that

wε(x) = εm
(x
ε

)
+O(ε) and χε(x) = εm

(x
ε

)
+O(ε). (8.47)

Therefore, there exists a subsequence εn → 0 as n→ +∞, such that

wεn , χεn →W locally uniformly as n→ +∞, (8.48)

with W (0) = 0. Proceeding as in the proof of convergence (Section 7), away from the junction
point, we have that W satisfies

H(Wx) = A for x 6= 0.

This proves (6.6). Let us now prove (6.7).
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For x < 0, we have for all γ ∈ (0, γ0), if A > H0,

Wx ≤ p− + γ,

where we have used (6.5). Therefore, we have Wx = p− for x < 0, this equality remains valid if
A = H0 (indeed, if A = H0, we have p+ = p− = p0 = Wx).

For x > 0, we have for all γ ∈ (0, γ0), if A > H0,

Wx ≥ p+ − γ,

where we have used (6.4). Therefore, we have that Wx = p+ for x > 0, this result is still valid if
A = H0.

Combining these results, we obtain (6.7).

Theorem 8.8 (Effective flux limiter). Assume (A). We define the following set of functions,

S = {(v, ζ) s.t. ∃ a Lipschitz continuous function m (with m(0)=0)
and constant C > 0 s.t. ||v −m||∞, ||ζ −m||∞ ≤ C} .

Then we have

A = inf{λ ∈ [H0, 0] : ∃(v, ζ) ∈ S solution of (6.1)}. (8.49)

Proof of Theorem 8.8. Up to a sub-sequence, let A = lim
R→+∞

lim
l→+∞

λl,R. We want to prove that

A = inf E, with

E = {λ ∈ [H0, 0] : ∃(v, ζ) ∈ S solution of (6.1)}.

We argue by contradiction and assume that there exists λ ∈ E such that λ < A. We denote by
(vλ, ζλ) a solution of (6.1) associated to λ. Arguing as in the proof of Theorem 6.1, Step 2, we
deduce that the functions

vελ(x) = εvλ
(x
ε

)
and ζελ(x) = εζλ

(x
ε

)
(8.50)

have a limit Wλ (with Wλ(0) = 0) which satisfies

H(Wλ
x ) = λ for x 6= 0.

This means that for all x > 0, we have

Wλ
x ≤ pλ+ < p+ with H(pλ+) = H

+(pλ+) = λ. (8.51)

Similarly, for all x < 0, we have

Wλ
x ≥ pλ− > p− with H(pλ−) = H

−(pλ−) = λ. (8.52)

These inequalities imply that for all γ > 0, there exists a constant C̃γ such that

vλ(x), ζλ(x) ≤
{

(pλ+ + γ)x+ C̃γ for x > 0,
(pλ− − γ)x+ C̃γ for x < 0. (8.53)

Using Theorem 6.1 (ii), we have for γ small enough,

vλ ≤ w and ζλ ≤ χ for |x| ≥ R̃.

This implies that there exists a constant CR̃ such that for all x ∈ R, we have

vλ(x) < w(x) + CR̃ and ζλ(x) < χ(x) + CR̃.
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Let us now introduce two functions (u, ξ) and (uλ, ξλ), defined by{
u(t, x) = w(x) + CR̃ −At,
ξ(t, x) = χ(x) + CR̃ −At,

and
{
uλ(t, x) = vλ(x)− λt,
ξλ(t, x) = ζλ(x)− λt.

Both functions are solutions of (3.3) (with ε = 1) and

uλ(0, x) ≤ u(0, x) and ξλ(0, x) ≤ ξ(0, x).

Using the comparison principle (Proposition 4.7), we obtain

vλ(x)− λt ≤ w(x)−At+ CR̃.

Passing to the limit as t goes to infinity, we get A ≤ λ, which is a contradiction.

9 Link between the system of ODEs and the PDE
This section is devoted to the proof of Theorem 3.3, which is a direct application of our convergence
result, Theorem 3.2 joint to the following result.

Theorem 9.1. For ε = 1, (ρ, σ) defined by (2.2) and (3.2) is a discontinuous viscosity solution
of the following equation

{
ρt +M (ρ(t, x), [σ(t, ·)]) (x) · |ρx| = 0
σt + L (x, σ(t, x), [ρ(t, ·)]) (x) · |σx| = 0 for (t, x) ∈ (0,+∞)× R. (9.1)

The proof of Theorem 9.1 is given in Appendix B. Let us use Theorem 9.1 to do the proof of
Theorem 3.3.

Proof of Theorem 3.3. We define two functions u0 and ξε0 satisfying (A0) such that

ρε(0, x) = ρε0(x) = ε

⌊
u0(x)
ε

⌋
and σε(0, x) = σε0(x) = ε

⌊
ξε0(x)
ε

⌋
.

By construction we have

(ρε0)∗(x) = ρε0(x) ≤ u0(x) < (ρε0)∗(x) + ε,

(σε0)∗(x) = σε0(x) ≤ ξε0(x) < (σε0)∗(x) + ε.

Using the fact that (ρε, σε) is a viscosity solution of (3.3) and the comparison principle (Proposition
4.7) we deduce that (with (uε, ξε) the continuous solution of (3.3))

ρε(t, x) ≤ uε(t, x) ≤ (ρε)∗(t, x) + ε and σε(t, x) ≤ ξε(t, x) ≤ (σε)∗(t, x) + ε.

and therefore

uε(t, x)− ε ≤ ρε(t, x) ≤ uε(t, x) and ξε(t, x)− ε ≤ σε(t, x) ≤ ξε(t, x).

Passing to the limit as ε→ 0, we get that ρε, σε → u0, which ends the proof of Theorem 3.3.
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Appendix A Analysis of system (3.1)
In this section we present some properties of the solution (Ui,Ξi)i∈Z of U̇j(t) = α (Ξj(t)− Uj(t))

Ξ̇j(t) = α (Uj(t)− Ξj(t)) + 2V (Uj+1(t)− Uj(t)) · φ (Uj(t)) .
(A.1)

We couple system (A.1) with an initial condition (Ui(0),Ξi(0))i that satisfy the following assump-
tion.

(A0’) (Initial conditions for (A.1)). For all i ∈ Z,

0 ≤ Ξi(0)− Ui(0) ≤ Vmax
α

, Ui+1(0)− Ξi(0) ≥ h0, and Ui+1(0)− Ui(0) ≤ hmax. (A.2)

Proposition A.1 (Bounds on the velocities of the vehicles). Assume (A) and (A0’), then the
solution (Ui,Ξi)i of (A.1) satisfies for all i ∈ Z

0 ≤ Ξi(t)− Ui(t) ≤
Vmax
α

for all t > 0. (A.3)

Proof. Let us consider the equation satisfied by Ξi − Ui,
d(Ξi − Ui)

dt
= −2α (Ξi − Ui) + 2V (Uj+1 − Uj) · φ (Uj) for all t > 0,

0 ≤ Ξi(0)− Ui(0) ≤ Vmax
α

.

Step 1: proof of the upper bound in (A.3). Using assumptions (A1), (A4), and (A6), we
notice that Ξi − Ui is a sub-solution of{

ż = −2αz + 2Vmax,
z(0) = Vmax

α
.

(A.4)

By comparison, we have

Ξi(t)− Ui(t) ≤ z(t) = Vmax
α

for all t ≥ 0.

Step 2: proof of the lower bound in (A.3). Using assumptions (A1), (A3), and (A6), we
notice that Ξi − Ui is a super-solution of{

ż = −2αz,
z(0) = 0. (A.5)

By comparison, we have

Ξi(t)− Ui(t) ≥ z(t) = 0 for all t ≥ 0.

This ends the proof of Proposition A.1.

Proposition A.2 (Conservation of the order in (A.1)). Assume (A) and (A0’), then the solution
(Ui,Ξi)i of (A.1) satisfies for all i ∈ Z,

Ui+1(t)− Ξi(t) ≥ h0 for all t > 0. (A.6)

In particular, using Proposition A.1, this result implies that

Ui+1(t)− Ui(t) ≥ h0 and Ξi+1(t)− Ξi(t) ≥ h0 for all t > 0. (A.7)
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Proof. We will prove that for all δ > 0 small, we have

Ui+1(t)− Ξi(t) ≥ h0 − δ for all t > 0.

Then passing to the limit as δ goes to 0 we will obtain (A.6).

Let δ > 0, we argue by contradiction and assume there exists a time

t∗ = inf{t, s.t. ∃j ∈ Z s.t. Uj+1(t)− Ξj(t) = h0 − δ}.

Let us consider j ∈ Z such that Uj+1(t∗) − Ξj(t∗) = h0 − δ. By continuity, there exists a time
t0 ∈ [0, t∗) such that

Uj+1(t0)− Ξj(t0) = h0 and Uj+1(t)− Ξj(t) ∈ [h0 − δ, h0] for all t ∈ [t0, t∗].

Using Proposition A.1, in particular that Uj ≤ Ξj , and assumption (A7) combined with Remark
2.2, we have that

α(Uj − Ξj) + 2V (Uj+1 − Uj) · φ(Uj) ≤ 2V (Uj+1 − Ξj) · φ(Ξj) ≤ 2V (h0) · φ(Ξj) = 0. (A.8)

This implies that (Uj ,Ξj) satisfies for all t ∈ [t0, t∗],{
U̇j = α(Ξj − Uj)
Ξ̇j ≤ 0, with

{
Uj(t0) ≤ Ξj(t0)
Ξj(t0) = Uj+1(t0)− h0.

Therefore, we have for all t ∈ [t0, t∗]

Ξj(t) ≤ Uj+1(t0)− h0.

Using again Proposition A.1, in particular that the functions (Ui)i are non-decreasing in time, we
obtain that

Ξj(t∗) ≤ Uj+1(t∗)− h0,

which is a contradiction. This ends the proof of Proposition A.2.

Proposition A.3 (Maximal distance between two vehicles). Assume (A) and (A0’), then the
solution (Ui,Ξi)i of (A.1) satisfies for all i ∈ Z,

Ui+1(t)− Ui(t) ≤ hmax + 3Vmax
2α + 2r

φ0
for all t > 0. (A.9)

In particular, using Proposition A.1, we have that for all i ∈ Z,

Ui+1(t)− Ξi(t) ≤ hmax + 3Vmax
2α + 2r

φ0
for all t > 0. (A.10)

Proof. We will prove that for all δ > 0 small, we have for all i ∈ Z,

Ui+1(t)− Ui(t) ≤ hmax + 3Vmax
2α + 2r

φ0
+ δ for all t > 0. (A.11)

Passing to the limit in the previous inequality as δ goes to 0, we will obtain (A.9).

Let δ > 0, we argue by contradiction and assume there exists a time

t∗ = inf
{
t s.t. ∃j ∈ Z s.t. Uj+1(t)− Uj(t) > hmax + 2r

φ0
+ 3Vmax

2α + δ

}
.
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Let us consider j ∈ Z such that Uj+1(t∗)− Uj(t∗) = hmax + 2r
φ0

+ 3Vmax
2α + δ. By continuity and

(A0’), there exists a time t0 ∈ [0, t∗) such that

Uj+1(t0)− Uj(t0) = hmax (A.12)

and

Uj+1(t)− Uj(t) ∈
[
hmax, hmax + 2r

φ0
+ 3Vmax

2α + δ

]
for all t ∈ [t0, t∗].

We distinguish three cases.

Case 1: Uj(t0) ∈ [−r, r]. The couple (Uj ,Ξj) satisfy for all t ∈ [t0, t∗]{
U̇j = α(Ξj − Uj)
Ξ̇j = α(Uj − Ξj) + 2Vmax · φ(Uj),

with
{

Uj(t0) = Uj+1(t0)− hmax
0 ≤ Ξj(t0)− Uj(t0) ≤ Vmax

α
.

(A.13)

In order to compare the distance Uj+1 − Uj when Uj is inside the perturbation, we consider the
worst case scenario where the vehicle j advances at a speed Vmaxφ0 and j+ 1 advances at a speed
Vmax, until Uj ≥ r (meaning that the vehicle j is outside the perturbation). To be more exact,
we notice that the couple (Uj ,Ξj) is a super-solution of the following system{

v̇ = α(ζ − v)
ζ̇ = α(v − ζ) + 2Vmaxφ0,

with
{
v(t0) = Uj+1(t0)− hmax
ζ(t0) = v(t0). (A.14)

Computing the solution of (A.14) we get
v(t) = Vmaxφ0

2α e−2α(t−t0) − Vmaxφ0

2α + Vmaxφ0(t− t0) + v(t0)

ζ(t) = −Vmaxφ0

2α e−2α(t−t0) + Vmaxφ0

2α + Vmaxφ0(t− t0) + v(t0)
(A.15)

By comparison, we obtain that

Uj(t) ≥ v(t) = Vmaxφ0

2α e−2α(t−t0) − Vmaxφ0

2α + Vmaxφ0(t− t0) + v(t0). (A.16)

Let t̂ = 1
Vmaxφ0

(
Vmaxφ0

2α + r − Uj(t0)
)

+ t0. Using (A.16), we have that Uj(t̂) ≥ r. We now

prove that t̂ < t∗. In fact, for all t ∈ [t0, t̂], we have

Uj+1(t)− Uj(t) ≤ Uj+1(t̂)− Uj(t0) ≤ Vmax(t̂− t0) + Uj+1(t0)− Uj(t0)

= Vmax

(
1

Vmaxφ0

(
Vmaxφ0

2α + r − Uj(t0)
))

+ Uj+1(t0)− Uj(t0)

≤ Vmax
2α +

(
r − Uj(t0)

φ0

)
+ hmax

≤ Vmax
2α + 2r

φ0
+ hmax,

where we have used Proposition A.1 for the first line. From the previous inequality and the
definition of t∗, we deduce that t̂ < t∗.

The couple (Uj ,Ξj) satisfies for all t ∈ [t̂, t∗],{
U̇j = α(Ξj − Uj)
Ξ̇j = α(Uj − Ξj) + 2Vmax,

(A.17)
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with 
hmax ≤ Uj+1(t̂)− Uj(t̂) ≤ hmax + 2r

φ0
+ Vmax

2α
0 ≤ Ξj(t̂)− Uj(t̂) ≤

Vmax
α

.
(A.18)

We can easily compute the explicit form of the solution of (A.18),

Uj(t) =
(Vmax

α
− Ξj(t̂) + Uj(t̂)

)e−2α(t−t̂)

2 − Vmax
2α + Vmax(t− t̂) + 1

2
(
Ξj(t̂) + Uj(t̂)

)
and

Ξj(t) =
(

Ξj(t̂)− Uj(t̂)−
Vmax
α

)e−2α(t−t̂)

2 + Vmax
2α + Vmax(t− t̂) + 1

2
(
Ξj(t̂) + Uj(t̂)

)
.

Using Proposition A.1, for all t ∈ [t̂, t∗], we have that

Uj+1(t) ≤ Vmax(t− t̂) + Uj+1(t̂). (A.19)

Therefore, combining the previous results, we have for all t ∈ [t̂, t∗]

Uj+1(t)− Uj(t) ≤Vmax(t− t̂) + Uj+1(t̂)− Vmax(t− t̂)− 1
2
(
Ξj(t̂) + Uj(t̂)

)
−
(Vmax

α
− Ξj(t̂) + Uj(t̂)

)e−2α(t−t̂)

2 + Vmax
2α

≤Uj+1(t̂)− 1
2
(
Ξj(t̂) + Uj(t̂)

)
+ Vmax

2α

≤Uj+1(t̂)− Uj(t̂) + Vmax
2α

≤hmax + 2r
φ0

+ Vmax
α

,

where we have used Proposition A.1 for the second and third inequality and we have used (A.18) for
the last inequality. The previous inequality remains valid for t = t∗ which gives us a contradiction.

Case 2: Uj(t0) > r. In this case, the couple (Uj ,Ξj) satisfies system (A.17) for all t ∈ (t0, t∗],
with the following initial conditions{

Uj(t0) = Uj+1(t0)− hmax
0 ≤ Ξj(t0)− Uj(t0) ≤ Vmax

α
.

(A.20)

As above, the explicit solution of (A.17)-(A.20) has the following form,

Uj(t) =
(Vmax

α
− Ξj(t0) + Uj(t0)

)e−2α(t−t0)

2 − Vmax
2α + Vmax(t− t0) + 1

2 (Ξj(t0) + Uj(t0))

and

Ξj(t) =
(

Ξj(t0)− Uj(t0)− Vmax
α

)e−2α(t−t0)

2 + Vmax
2α + Vmax(t− t0) + 1

2 (Ξj(t0) + Uj(t0)) .

Arguing as above, we will obtain Uj+1(t∗)− Uj(t∗) ≤ hmax + Vmax
2α which is a contradiction.

Case 3: Uj(t0) < −r. We treat this case in 3 steps.
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Step 1: left of the perturbation. We denote by

t̂ = inf {t ≥ t0 s.t. Uj(t) = −r} .

For all t ∈ [t0, t̂], the couple (Uj ,Ξj) satisfies (A.17)-(A.20) and therefore has the same form as
the one presented in Case 2. In particular, for all t ∈ [t0, t̂], we have

Uj+1(t)− Uj(t) ≤ hmax + Vmax
2α . (A.21)

This implies that t̂ < t∗.

Step 2: inside the perturbation. In the interval [t̂, t∗], the couple (Uj ,Ξj) satisfies (A.13)
with the following initial condition

Uj+1(t̂)− Uj(t̂) ≤ hmax + Vmax
2α

0 ≤ Ξj(t̂)− Uj(t̂) ≤
Vmax
α

.

The couple (Uj ,Ξj) is a super-solution of{
v̇ = α(ζ − v)
ζ̇ = α(v − ζ) + 2Vmaxφ0,

with
{

v(t̂) = Uj+1(t̂) + hmax + Vmax
2α

ζ(t̂) = v(t̂).
(A.22)

Computing the solution of (A.22), and by comparison, for all t ∈ [t̂, t∗], we have

Uj(t) ≥
Vmaxφ0

2α e−2α(t−t̂) − Vmaxφ0

2α + Vmaxφ0(t− t̂) + v(t̂).

Let t̃ = 1
Vmaxφ0

(
Vmaxφ0

2α + r − Uj(t̂)
)

+ t̂. Using (A.16), we have that Uj(t̃) ≥ r. We now prove

that t̃ < t∗. We recall that Uj(t̂) = −r. In fact, for all t ∈ [t̂, t̃], we have

Uj+1(t)− Uj(t) ≤ Uj+1(t̃)− Uj(t̂) ≤ Vmax(t̃− t̂) + Uj+1(t̂)− Uj(t̂)

= Vmax

(
1

Vmaxφ0

(
Vmaxφ0

2α + r − Uj(t̂)
))

+ Uj+1(t̂)− Uj(t̂)

≤ Vmax
α

+ 2r
φ0

+ hmax,

where we have used Proposition A.1 for the first line. From the previous inequality and the
definition of t∗, we deduce that t̃ < t∗.

Step 3: right of the perturbation. In the interval [t̃, t∗], the couple (Uj ,Ξj) satisfies
(A.17), with the following initial condition

Uj+1(t̃)− Uj(t̃) ≤
Vmax
α

+ 2r
φ0

+ hmax.

Proceeding like before, we can prove that for all t ∈ [t̃, t∗], we have

Uj+1(t)− Uj(t) ≤
3Vmax

2α + 2r
φ0

+ hmax,

which gives us a contradiction for t = t∗. This ends the proof of Proposition A.3.
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Appendix B Proof of Theorem 9.1
Before we give the proof of Theorem 9.1, we need the following result.
Lemma B.1 (Link between the velocities). Assume (A). Let ((Uj)j , (Ξj)j) be the solution of (3.1)
with an initial condition (Uj(0),Ξj(0))j satisfying (A0’). Then we have

U̇j(t) = −M (u (t, Uj(t)) , [ξ (t, ·)]) (Uj(t)) (B.1)

and

Ξ̇j(t) = −L (Ξj(t), ξ (t,Ξj(t)) , [u(t, ·)]) (Ξj(t)) , (B.2)

where u and ξ are continuous functions such that{
u(t, x) = ρ∗(t, x) = ρ(t, x) for x = Uj(t), j ∈ Z,
u is decreasing in x, (B.3)

{
ξ(t, x) = σ∗(t, x) = σ(t, x) for x = Ξj(t), j ∈ Z,
ξ is decreasing in x, (B.4)

where ρ and σ are defined respectively in (2.2) and (3.2) (with ε = 1).
Proof. We drop the time dependence to simplify the presentation. Let j ∈ Z. We recall that we
chose D = hmax + 3Vmax/(2α) + 2r/φ0. Using the fact that u(t, Uj(t)) = −(j + 1) and (B.3), we
have for all z ∈ [0,+∞),{

ξ(Uj + z)− u(Uj) > ξ(Ξj)− u(Uj) = 0 if z ∈ [0,Ξj − Uj)
ξ(Uj + z)− u(Uj) ≤ 0 if z ∈ [Ξj − Uj ,+∞).

Using Proposition A.1, in particular that Ξj − Uj ≤ D, we have

M (u (t, Uj(t)) , [ξ (t, ·)]) (Uj(t)) =
∫ D

0
E (ξ (Uj + z)− u (Uj)) dz

=
∫ Ξj−Uj

0
E (ξ (Uj + z)− u (Uj)) dz +

∫ D

Ξj−Uj
E (ξ (Uj + z)− u (Uj)) dz

= −α (Ξj − Uj) .

Combining this result with (3.1), we obtain (B.1). We now turn to the proof of (B.2).
We will begin by computing K (ξ (t,Ξj(t)) , [u(t, ·)]) (Ξj(t)). Using the fact that ξ (t,Ξ(t)) =

−(j + 1) and (B.4), we have for all z ∈ [0,+∞),{
u(Ξj − z)− ξ(Ξj) < u(Uj)− ξ(Ξj) = 0 if z ∈ [0,Ξj − Uj)
u(Ξj − z)− ξ(Ξj) ≥ 0 if z ∈ [Ξj − Uj ,+∞).

Thanks to Proposition A.1, this implies that

K (ξ (t,Ξj(t)) , [u (t, ·)]) (Ξj(t)) =
∫ Ξj−Uj

0
F (u (Ξj − z)− ξ (Ξj)) dz = Ξj − Uj .

We now turn to the computation of N (ξ (t,Ξj(t)) , [u (t, ·)]) (Ξj(t)). We recall that thanks to
Proposition A.2, we have Uj+1 − Ξj ≥ h0. In particular, we have that{

u(Ξj + z)− ξ(Ξj) > u(Uj+1)− ξ(Ξj) = −1 if z ∈ [0, Uj+1 − Ξj)
u(Ξj + z)− ξ(Ξj) ≤ −1 if z ∈ [Uj+1 − Ξj ,+∞).

Once more thanks to Proposition A.3, we obtain

N (ξ (t,Ξj(t)) , [u (t, ·)]) (Ξj(t)) =
∫ Uj+1−Ξj

0
I (u (Ξj + z)− ξ (Ξj)) dz = Uj+1 − Ξj .

Combining the previous results with (3.14) and (3.1), we obtain (B.2).
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Proof of Theorem 9.1. We remark that thanks to (B.3) and (B.4), we have for x = Uj(t) and
y = Ξj(t), j ∈ Z,

M̃ (ρ∗(t, x), [σ∗(t, ·)]) (x) = M̃ (u(t, x), [ξ(t, ·)]) (x) ≥M (u(t, x), [ξ(t, ·)]) (x),

and

L̃ (y, σ∗(t, y), [ρ∗(t, ·)]) (y) = L̃ (y, ξ∗(t, y), [u(t, ·)]) (y) ≥ L (y, ξ∗(t, y), [u(t, ·)]) (y).

Using Lemma B.1, and Definition 4.1, we can see that (ρ∗, σ∗) is a discontinuous viscosity super-
solution of (9.1). We obtain a similar result for (ρ∗, σ∗), therefore, (ρ, σ) is a discontinuous viscosity
solution of (9.1).
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